Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1379–1392. doi: 10.1093/genetics/156.3.1379

Quantitative trait loci for floral morphology in Arabidopsis thaliana.

T Juenger 1, M Purugganan 1, T F Mackay 1
PMCID: PMC1461322  PMID: 11063709

Abstract

A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these same traits in the Landsberg erecta x Columbia recombinant inbred line population. There was significant genetic variation for all traits in both the sample of naturally occurring ecotypes and in the Ler x Col recombinant inbred line population. In addition, broad-sense genetic correlations among the traits were positive and high. A composite interval mapping (CIM) analysis detected 18 significant QTL affecting at least one floral character. Eleven QTL were associated with several floral traits, supporting either pleiotropy or tight linkage as major determinants of flower morphological integration. We propose several candidate genes that may underlie these QTL on the basis of positional information and functional arguments. Genome-wide QTL mapping is a promising tool for the discovery of candidate genes controlling morphological development, the detection of novel phenotypic effects for known genes, and in generating a more complete understanding of the genetic basis of floral development.

Full Text

The Full Text of this article is available as a PDF (406.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C. J., Koornneef M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4710–4717. doi: 10.1073/pnas.96.8.4710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alonso-Blanco C., Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 2000 Jan;5(1):22–29. doi: 10.1016/s1360-1385(99)01510-1. [DOI] [PubMed] [Google Scholar]
  3. Bowman J. L., Smyth D. R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development. 1999 Jun;126(11):2387–2396. doi: 10.1242/dev.126.11.2387. [DOI] [PubMed] [Google Scholar]
  4. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991 May;112(1):1–20. doi: 10.1242/dev.112.1.1. [DOI] [PubMed] [Google Scholar]
  5. Bradshaw H. D., Jr, Otto K. G., Frewen B. E., McKay J. K., Schemske D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics. 1998 May;149(1):367–382. doi: 10.1093/genetics/149.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Q., Atkinson A., Otsuga D., Christensen T., Reynolds L., Drews G. N. The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development. 1999 Jun;126(12):2715–2726. doi: 10.1242/dev.126.12.2715. [DOI] [PubMed] [Google Scholar]
  7. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark S. E., Williams R. W., Meyerowitz E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell. 1997 May 16;89(4):575–585. doi: 10.1016/s0092-8674(00)80239-1. [DOI] [PubMed] [Google Scholar]
  9. Clarke J. H., Mithen R., Brown J. K., Dean C. QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet. 1995 Aug 21;248(3):278–286. doi: 10.1007/BF02191594. [DOI] [PubMed] [Google Scholar]
  10. Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elliott R. C., Betzner A. S., Huttner E., Oakes M. P., Tucker W. Q., Gerentes D., Perez P., Smyth D. R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. doi: 10.1105/tpc.8.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hauser B. A., He J. Q., Park S. O., Gasser C. S. TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development. 2000 May;127(10):2219–2226. doi: 10.1242/dev.127.10.2219. [DOI] [PubMed] [Google Scholar]
  13. Jacobsen S. E., Running M. P., Meyerowitz E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development. 1999 Dec;126(23):5231–5243. doi: 10.1242/dev.126.23.5231. [DOI] [PubMed] [Google Scholar]
  14. Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kayes J. M., Clark S. E. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development. 1998 Oct;125(19):3843–3851. doi: 10.1242/dev.125.19.3843. [DOI] [PubMed] [Google Scholar]
  16. Kim G. T., Tsukaya H., Saito Y., Uchimiya H. Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9433–9437. doi: 10.1073/pnas.96.16.9433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim S. C., Rieseberg L. H. Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics. 1999 Oct;153(2):965–977. doi: 10.1093/genetics/153.2.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kowalski S. P., Lan T. H., Feldmann K. A., Paterson A. H. QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet. 1994 Dec 1;245(5):548–555. doi: 10.1007/BF00282217. [DOI] [PubMed] [Google Scholar]
  19. Krizek B. A. Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet. 1999 Sep;25(3):224–236. doi: 10.1002/(SICI)1520-6408(1999)25:3<224::AID-DVG5>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  20. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  21. Lin X., Kaul S., Rounsley S., Shea T. P., Benito M. I., Town C. D., Fujii C. Y., Mason T., Bowman C. L., Barnstead M. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. doi: 10.1038/45471. [DOI] [PubMed] [Google Scholar]
  22. Liu Z., Meyerowitz E. M. LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development. 1995 Apr;121(4):975–991. doi: 10.1242/dev.121.4.975. [DOI] [PubMed] [Google Scholar]
  23. Long A. D., Mullaney S. L., Mackay T. F., Langley C. H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1497–1510. doi: 10.1093/genetics/144.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lynn K., Fernandez A., Aida M., Sedbrook J., Tasaka M., Masson P., Barton M. K. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development. 1999 Feb;126(3):469–481. doi: 10.1242/dev.126.3.469. [DOI] [PubMed] [Google Scholar]
  25. Mackay T. F., Fry J. D. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci. Genetics. 1996 Oct;144(2):671–688. doi: 10.1093/genetics/144.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mackay T. F. The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system. Trends Genet. 1995 Dec;11(12):464–470. doi: 10.1016/s0168-9525(00)89154-4. [DOI] [PubMed] [Google Scholar]
  27. Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G., Pohl T., Düsterhöft A., Stiekema W., Entian K. D., Terryn N. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):769–777. doi: 10.1038/47134. [DOI] [PubMed] [Google Scholar]
  28. Meyerowitz E. M. Genetic control of cell division patterns in developing plants. Cell. 1997 Feb 7;88(3):299–308. doi: 10.1016/s0092-8674(00)81868-1. [DOI] [PubMed] [Google Scholar]
  29. Mitchell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics. 1995 Jul;140(3):1105–1109. doi: 10.1093/genetics/140.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mitchell-Olds T., Pedersen D. The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics. 1998 Jun;149(2):739–747. doi: 10.1093/genetics/149.2.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nuzhdin S. V., Keightley P. D., Pasyukova E. G., Morozova E. A. Mapping quantitative trait loci affecting sternopleural bristle number in Drosophila melanogaster using changes of marker allele frequencies in divergently selected lines. Genet Res. 1998 Oct;72(2):79–91. doi: 10.1017/s001667239800336x. [DOI] [PubMed] [Google Scholar]
  32. Pelaz S., Ditta G. S., Baumann E., Wisman E., Yanofsky M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000 May 11;405(6783):200–203. doi: 10.1038/35012103. [DOI] [PubMed] [Google Scholar]
  33. Ratcliffe O. J., Riechmann J. L., Zhang J. Z. INTERFASCICULAR FIBERLESS1 is the same gene as REVOLUTA. Plant Cell. 2000 Mar;12(3):315–317. doi: 10.1105/tpc.12.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roe J. L., Rivin C. J., Sessions R. A., Feldmann K. A., Zambryski P. C. The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell. 1993 Dec 3;75(5):939–950. doi: 10.1016/0092-8674(93)90537-z. [DOI] [PubMed] [Google Scholar]
  35. Running M. P., Fletcher J. C., Meyerowitz E. M. The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development. 1998 Jul;125(14):2545–2553. doi: 10.1242/dev.125.14.2545. [DOI] [PubMed] [Google Scholar]
  36. Sablowski R. W., Meyerowitz E. M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 1998 Jan 9;92(1):93–103. doi: 10.1016/s0092-8674(00)80902-2. [DOI] [PubMed] [Google Scholar]
  37. Sawa S., Ito T., Shimura Y., Okada K. FILAMENTOUS FLOWER controls the formation and development of arabidopsis inflorescences and floral meristems. Plant Cell. 1999 Jan;11(1):69–86. doi: 10.1105/tpc.11.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sessions A., Nemhauser J. L., McColl A., Roe J. L., Feldmann K. A., Zambryski P. C. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development. 1997 Nov;124(22):4481–4491. doi: 10.1242/dev.124.22.4481. [DOI] [PubMed] [Google Scholar]
  39. Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Song J. Y., Leung T., Ehler L. K., Wang C., Liu Z. Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development. 2000 May;127(10):2207–2217. doi: 10.1242/dev.127.10.2207. [DOI] [PubMed] [Google Scholar]
  41. Stratton D. A. Reaction norm functions and QTL-environment interactions for flowering time in Arabidopsis thaliana. Heredity (Edinb) 1998 Aug;81(Pt 2):144–155. doi: 10.1046/j.1365-2540.1998.00369.x. [DOI] [PubMed] [Google Scholar]
  42. Swarup K., Alonso-Blanco C., Lynn J. R., Michaels S. D., Amasino R. M., Koornneef M., Millar A. J. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 1999 Oct;20(1):67–77. doi: 10.1046/j.1365-313x.1999.00577.x. [DOI] [PubMed] [Google Scholar]
  43. Talbert P. B., Adler H. T., Parks D. W., Comai L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development. 1995 Sep;121(9):2723–2735. doi: 10.1242/dev.121.9.2723. [DOI] [PubMed] [Google Scholar]
  44. Theissen G, Saedler H. The golden decade of molecular floral development (1990-1999): A cheerful obituary. Dev Genet. 1999 Sep;25(3):181–193. doi: 10.1002/(SICI)1520-6408(1999)25:3<181::AID-DVG1>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  45. Torii K. U., Mitsukawa N., Oosumi T., Matsuura Y., Yokoyama R., Whittier R. F., Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell. 1996 Apr;8(4):735–746. doi: 10.1105/tpc.8.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet. 1995;29:19–39. doi: 10.1146/annurev.ge.29.120195.000315. [DOI] [PubMed] [Google Scholar]
  47. Wilson K., Long D., Swinburne J., Coupland G. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell. 1996 Apr;8(4):659–671. doi: 10.1105/tpc.8.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yokoyama R., Takahashi T., Kato A., Torii K. U., Komeda Y. The Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organ primordia. Plant J. 1998 Aug;15(3):301–310. doi: 10.1046/j.1365-313x.1998.00203.x. [DOI] [PubMed] [Google Scholar]
  49. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhao D., Yang M., Solava J., Ma H. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev Genet. 1999 Sep;25(3):209–223. doi: 10.1002/(SICI)1520-6408(1999)25:3<209::AID-DVG4>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  52. Zondlo S. C., Irish V. F. CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. Plant J. 1999 Aug;19(3):259–268. doi: 10.1046/j.1365-313x.1999.00523.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES