Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1129–1146. doi: 10.1093/genetics/156.3.1129

Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.

E G Pasyukova 1, C Vieira 1, T F Mackay 1
PMCID: PMC1461330  PMID: 11063689

Abstract

In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested.

Full Text

The Full Text of this article is available as a PDF (269.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashburner M., Misra S., Roote J., Lewis S. E., Blazej R., Davis T., Doyle C., Galle R., George R., Harris N. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics. 1999 Sep;153(1):179–219. doi: 10.1093/genetics/153.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet. 1998 Jan;18(1):19–24. doi: 10.1038/ng0198-19. [DOI] [PubMed] [Google Scholar]
  4. Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fry J. D., Heinsohn S. L., Mackay T. F. Heterosis for viability, fecundity, and male fertility in Drosophila melanogaster: comparison of mutational and standing variation. Genetics. 1998 Mar;148(3):1171–1188. doi: 10.1093/genetics/148.3.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gurganus M. C., Fry J. D., Nuzhdin S. V., Pasyukova E. G., Lyman R. F., Mackay T. F. Genotype-environment interaction at quantitative trait loci affecting sensory bristle number in Drosophila melanogaster. Genetics. 1998 Aug;149(4):1883–1898. doi: 10.1093/genetics/149.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gurganus M. C., Nuzhdin S. V., Leips J. W., Mackay T. F. High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics. 1999 Aug;152(4):1585–1604. doi: 10.1093/genetics/152.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  9. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keightley P. D., Morris K. H., Ishikawa A., Falconer V. M., Oliver F. Test of candidate gene--quantitative trait locus association applied to fatness in mice. Heredity (Edinb) 1998 Dec;81(Pt 6):630–637. doi: 10.1046/j.1365-2540.1998.00450.x. [DOI] [PubMed] [Google Scholar]
  11. Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
  12. Leips J., Mackay T. F. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics. 2000 Aug;155(4):1773–1788. doi: 10.1093/genetics/155.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lithgow G. J. Invertebrate gerontology: the age mutations of Caenorhabditis elegans. Bioessays. 1996 Oct;18(10):809–815. doi: 10.1002/bies.950181007. [DOI] [PubMed] [Google Scholar]
  14. Long A. D., Lyman R. F., Langley C. H., Mackay T. F. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics. 1998 Jun;149(2):999–1017. doi: 10.1093/genetics/149.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Long A. D., Lyman R. F., Morgan A. H., Langley C. H., Mackay T. F. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics. 2000 Mar;154(3):1255–1269. doi: 10.1093/genetics/154.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Long A. D., Mullaney S. L., Mackay T. F., Langley C. H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1497–1510. doi: 10.1093/genetics/144.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lyman R. F., Lai C., MacKay T. F. Linkage disequilibrium mapping of molecular polymorphisms at the scabrous locus associated with naturally occurring variation in bristle number in Drosophila melanogaster. Genet Res. 1999 Dec;74(3):303–311. doi: 10.1017/s001667239900419x. [DOI] [PubMed] [Google Scholar]
  19. Lyman R. F., Mackay T. F. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region. Genetics. 1998 Jun;149(2):983–998. doi: 10.1093/genetics/149.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mackay T. F., Fry J. D. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci. Genetics. 1996 Oct;144(2):671–688. doi: 10.1093/genetics/144.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mackay T. F. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. Bioessays. 1996 Feb;18(2):113–121. doi: 10.1002/bies.950180207. [DOI] [PubMed] [Google Scholar]
  22. McClearn G. E., Johansson B., Berg S., Pedersen N. L., Ahern F., Petrill S. A., Plomin R. Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science. 1997 Jun 6;276(5318):1560–1563. doi: 10.1126/science.276.5318.1560. [DOI] [PubMed] [Google Scholar]
  23. Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z. B., Mackay T. F. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9734–9739. doi: 10.1073/pnas.94.18.9734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pasyukova E. G., Nuzhdin S. V. Doc and copia instability in an isogenic Drosophila melanogaster stock. Mol Gen Genet. 1993 Aug;240(2):302–306. doi: 10.1007/BF00277071. [DOI] [PubMed] [Google Scholar]
  25. Vieira C., Pasyukova E. G., Zeng Z. B., Hackett J. B., Lyman R. F., Mackay T. F. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics. 2000 Jan;154(1):213–227. doi: 10.1093/genetics/154.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES