Abstract
We describe a Markov chain Monte Carlo approach for assessing the role of site-to-site rate variation in the analysis of within-population samples of DNA sequences using the coalescent. Our framework is a Bayesian one. We discuss methods for assessing the goodness-of-fit of these models, as well as problems concerning the separate estimation of effective population size and mutation rate. Using a mitochondrial data set for illustration, we show that ancestral inference concerning coalescence times can be dramatically affected if rate variation is ignored.
Full Text
The Full Text of this article is available as a PDF (275.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Deng H. W., Fu Y. X. The effects of variable mutation rates across sites on the phylogenetic estimation of effective population size or mutation rate of DNA sequences. Genetics. 1996 Nov;144(3):1271–1281. doi: 10.1093/genetics/144.3.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnelly P., Tavaré S. Coalescents and genealogical structure under neutrality. Annu Rev Genet. 1995;29:401–421. doi: 10.1146/annurev.ge.29.120195.002153. [DOI] [PubMed] [Google Scholar]
- Excoffier L., Yang Z. Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. Mol Biol Evol. 1999 Oct;16(10):1357–1368. doi: 10.1093/oxfordjournals.molbev.a026046. [DOI] [PubMed] [Google Scholar]
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
- Kuhner M. K., Yamato J., Felsenstein J. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics. 1995 Aug;140(4):1421–1430. doi: 10.1093/genetics/140.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhner M. K., Yamato J., Felsenstein J. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics. 1998 May;149(1):429–434. doi: 10.1093/genetics/149.1.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundstrom R., Tavaré S., Ward R. H. Estimating substitution rates from molecular data using the coalescent. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5961–5965. doi: 10.1073/pnas.89.13.5961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundstrom R., Tavaré S., Ward R. H. Modeling the evolution of the human mitochondrial genome. Math Biosci. 1992 Dec;112(2):319–335. doi: 10.1016/0025-5564(92)90030-z. [DOI] [PubMed] [Google Scholar]
- Markovtsova L., Marjoram P., Tavaré S. The age of a unique event polymorphism. Genetics. 2000 Sep;156(1):401–409. doi: 10.1093/genetics/156.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mau B., Newton M. A., Larget B. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics. 1999 Mar;55(1):1–12. doi: 10.1111/j.0006-341x.1999.00001.x. [DOI] [PubMed] [Google Scholar]
- Meyer S., Weiss G., von Haeseler A. Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics. 1999 Jul;152(3):1103–1110. doi: 10.1093/genetics/152.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misawa K., Tajima F. Estimation of the amount of DNA polymorphism when the neutral mutation rate varies among sites. Genetics. 1997 Dec;147(4):1959–1964. doi: 10.1093/genetics/147.4.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigurğardóttir S., Helgason A., Gulcher J. R., Stefansson K., Donnelly P. The mutation rate in the human mtDNA control region. Am J Hum Genet. 2000 Apr 7;66(5):1599–1609. doi: 10.1086/302902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics. 1996 Jul;143(3):1457–1465. doi: 10.1093/genetics/143.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
- Tavaré S., Balding D. J., Griffiths R. C., Donnelly P. Inferring coalescence times from DNA sequence data. Genetics. 1997 Feb;145(2):505–518. doi: 10.1093/genetics/145.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorne J. L., Kishino H., Felsenstein J. Inching toward reality: an improved likelihood model of sequence evolution. J Mol Evol. 1992 Jan;34(1):3–16. doi: 10.1007/BF00163848. [DOI] [PubMed] [Google Scholar]
- Wakeley J. Substitution rate variation among sites in hypervariable region 1 of human mitochondrial DNA. J Mol Evol. 1993 Dec;37(6):613–623. doi: 10.1007/BF00182747. [DOI] [PubMed] [Google Scholar]
- Ward R. H., Frazier B. L., Dew-Jager K., Päbo S. Extensive mitochondrial diversity within a single Amerindian tribe. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8720–8724. doi: 10.1073/pnas.88.19.8720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
- Wilson I. J., Balding D. J. Genealogical inference from microsatellite data. Genetics. 1998 Sep;150(1):499–510. doi: 10.1093/genetics/150.1.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z., Rannala B. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol Biol Evol. 1997 Jul;14(7):717–724. doi: 10.1093/oxfordjournals.molbev.a025811. [DOI] [PubMed] [Google Scholar]
- Yang Z. Statistical properties of a DNA sample under the finite-sites model. Genetics. 1996 Dec;144(4):1941–1950. doi: 10.1093/genetics/144.4.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]