Abstract
Haplotype variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase (LPL) gene was scored in three populations: African-Americans from Jackson, Mississippi (24 individuals), Finns from North Karelia, Finland (24), and non-Hispanic whites from Rochester, Minnesota (23). Earlier analyses had indicated that recombination was common but concentrated into a hotspot and that recurrent mutations at multiple sites may have occurred. We show that much evolutionary structure exists in the haplotype variation on either side of the recombinational hotspot. By peeling off significant recombination events from a tree estimated under the null hypothesis of no recombination, we also reveal some cladistic structure not disrupted by recombination during the time to coalescence of this variation. Additional cladistic structure is estimated to have emerged after recombination. Many apparent multiple mutational events at sites still remain after removing the effects of the detected recombination/gene conversion events. These apparent multiple events are found primarily at sites identified as highly mutable by previous studies, strengthening the conclusion that they are true multiple events. This analysis portrays the complexity of the interplay among many recombinational and mutational events that would be needed to explain the patterns of haplotype diversity in this gene. The cladistic structure in this region is used to identify four to six single-nucleotide polymorphisms (SNPs) that would provide disequilibrium coverage over much of this region. These sites may be useful in identifying phenotypic associations with variable sites in this gene. Evolutionary considerations also imply that the SNPs in the 3' region should have general utility in most human populations, but the 5' SNPs may be more population specific. Choosing SNPs at random would generally not provide adequate disequilibrium coverage of the sequenced region.
Full Text
The Full Text of this article is available as a PDF (367.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal S. K., Debelenko L. V., Kester M. B., Guru S. C., Manickam P., Olufemi S. E., Skarulis M. C., Heppner C., Crabtree J. S., Lubensky I. A. Analysis of recurrent germline mutations in the MEN1 gene encountered in apparently unrelated families. Hum Mutat. 1998;12(2):75–82. doi: 10.1002/(SICI)1098-1004(1998)12:2<75::AID-HUMU1>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
- Boerwinkle E., Ellsworth D. L., Hallman D. M., Biddinger A. Genetic analysis of atherosclerosis: a research paradigm for the common chronic diseases. Hum Mol Genet. 1996;5(Spec No):1405–1410. doi: 10.1093/hmg/5.supplement_1.1405. [DOI] [PubMed] [Google Scholar]
- Castelloe J., Templeton A. R. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol. 1994 Jun;3(2):102–113. doi: 10.1006/mpev.1994.1013. [DOI] [PubMed] [Google Scholar]
- Chakravarti A., Buetow K. H., Antonarakis S. E., Waber P. G., Boehm C. D., Kazazian H. H. Nonuniform recombination within the human beta-globin gene cluster. Am J Hum Genet. 1984 Nov;36(6):1239–1258. [PMC free article] [PubMed] [Google Scholar]
- Clark A. G. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol. 1990 Mar;7(2):111–122. doi: 10.1093/oxfordjournals.molbev.a040591. [DOI] [PubMed] [Google Scholar]
- Clark A. G., Weiss K. M., Nickerson D. A., Taylor S. L., Buchanan A., Stengård J., Salomaa V., Vartiainen E., Perola M., Boerwinkle E. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am J Hum Genet. 1998 Aug;63(2):595–612. doi: 10.1086/301977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins F. S., Patrinos A., Jordan E., Chakravarti A., Gesteland R., Walters L. New goals for the U.S. Human Genome Project: 1998-2003. Science. 1998 Oct 23;282(5389):682–689. doi: 10.1126/science.282.5389.682. [DOI] [PubMed] [Google Scholar]
- Jones P. A., Rideout W. M., 3rd, Shen J. C., Spruck C. H., Tsai Y. C. Methylation, mutation and cancer. Bioessays. 1992 Jan;14(1):33–36. doi: 10.1002/bies.950140107. [DOI] [PubMed] [Google Scholar]
- Keavney B., McKenzie C. A., Connell J. M., Julier C., Ratcliffe P. J., Sobel E., Lathrop M., Farrall M. Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum Mol Genet. 1998 Oct;7(11):1745–1751. doi: 10.1093/hmg/7.11.1745. [DOI] [PubMed] [Google Scholar]
- Kimura M., Ohta T. The age of a neutral mutant persisting in a finite population. Genetics. 1973 Sep;75(1):199–212. doi: 10.1093/genetics/75.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krawczak M., Cooper D. N. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet. 1991 Mar;86(5):425–441. doi: 10.1007/BF00194629. [DOI] [PubMed] [Google Scholar]
- Krawczak M., Reitsma P. H., Cooper D. N. The mutational demography of protein C deficiency. Hum Genet. 1995 Aug;96(2):142–146. doi: 10.1007/BF00207369. [DOI] [PubMed] [Google Scholar]
- Long A. D., Lyman R. F., Langley C. H., Mackay T. F. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics. 1998 Jun;149(2):999–1017. doi: 10.1093/genetics/149.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyman R. F., Mackay T. F. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region. Genetics. 1998 Jun;149(2):983–998. doi: 10.1093/genetics/149.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magewu A. N., Jones P. A. Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer. Mol Cell Biol. 1994 Jun;14(6):4225–4232. doi: 10.1128/mcb.14.6.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markham R. B., Schwartz D. H., Templeton A., Margolick J. B., Farzadegan H., Vlahov D., Yu X. F. Selective transmission of human immunodeficiency virus type 1 variants to SCID mice reconstituted with human peripheral blood monoclonal cells. J Virol. 1996 Oct;70(10):6947–6954. doi: 10.1128/jvi.70.10.6947-6954.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa H., Koyama K., Miyoshi Y., Ando H., Baba S., Watatani M., Yasutomi M., Matsuura N., Monden M., Nakamura Y. Nine novel germline mutations of STK11 in ten families with Peutz-Jeghers syndrome. Hum Genet. 1998 Aug;103(2):168–172. doi: 10.1007/s004390050801. [DOI] [PubMed] [Google Scholar]
- Nickerson D. A., Taylor S. L., Weiss K. M., Clark A. G., Hutchinson R. G., Stengård J., Salomaa V., Vartiainen E., Boerwinkle E., Sing C. F. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet. 1998 Jul;19(3):233–240. doi: 10.1038/907. [DOI] [PubMed] [Google Scholar]
- Reiss J., Cooper D. N., Bal J., Slomski R., Cutting G. R., Krawczak M. Discrimination between recurrent mutation and identity by descent: application to point mutations in exon 11 of the cystic fibrosis (CFTR) gene. Hum Genet. 1991 Aug;87(4):457–461. doi: 10.1007/BF00197168. [DOI] [PubMed] [Google Scholar]
- Templeton A. R., Clark A. G., Weiss K. M., Nickerson D. A., Boerwinkle E., Sing C. F. Recombinational and mutational hotspots within the human lipoprotein lipase gene. Am J Hum Genet. 2000 Jan;66(1):69–83. doi: 10.1086/302699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton A. R. Nonparametric phylogenetic inference from restriction cleavage sites. Mol Biol Evol. 1987 May;4(3):315–323. doi: 10.1093/oxfordjournals.molbev.a040440. [DOI] [PubMed] [Google Scholar]
- Templeton A. R., Routman E., Phillips C. A. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics. 1995 Jun;140(2):767–782. doi: 10.1093/genetics/140.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton A. R., Sing C. F., Kessling A., Humphries S. A cladistic analysis of phenotype associations with haplotypes inferred from restriction endonuclease mapping. II. The analysis of natural populations. Genetics. 1988 Dec;120(4):1145–1154. doi: 10.1093/genetics/120.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todorova A., Danieli G. A. Large majority of single-nucleotide mutations along the dystrophin gene can be explained by more than one mechanism of mutagenesis. Hum Mutat. 1997;9(6):537–547. doi: 10.1002/(SICI)1098-1004(1997)9:6<537::AID-HUMU7>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Tunstall-Pedoe H., Kuulasmaa K., Amouyel P., Arveiler D., Rajakangas A. M., Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation. 1994 Jul;90(1):583–612. doi: 10.1161/01.cir.90.1.583. [DOI] [PubMed] [Google Scholar]
- Tvrdik T., Marcus S., Hou S. M., Fält S., Noori P., Podlutskaja N., Hanefeld F., Strømme P., Lambert B. Molecular characterization of two deletion events involving Alu-sequences, one novel base substitution and two tentative hotspot mutations in the hypoxanthine phosphoribosyltransferase (HPRT) gene in five patients with Lesch-Nyhan syndrome. Hum Genet. 1998 Sep;103(3):311–318. doi: 10.1007/s004390050822. [DOI] [PubMed] [Google Scholar]