Abstract
Background (purifying) selection on deleterious mutations is expected to remove linked neutral mutations from a population, resulting in a positive correlation between recombination rate and levels of neutral genetic variation, even for markers with high mutation rates. We tested this prediction of the background selection model by comparing recombination rate and levels of microsatellite polymorphism in humans. Published data for 28 unrelated Europeans were used to estimate microsatellite polymorphism (number of alleles, heterozygosity, and variance in allele size) for loci throughout the genome. Recombination rates were estimated from comparisons of genetic and physical maps. First, we analyzed 61 loci from chromosome 22, using the complete sequence of this chromosome to provide exact physical locations. These 61 microsatellites showed no correlation between levels of variation and recombination rate. We then used radiation-hybrid and cytogenetic maps to calculate recombination rates throughout the genome. Recombination rates varied by more than one order of magnitude, and most chromosomes showed significant suppression of recombination near the centromere. Genome-wide analyses provided no evidence for a strong positive correlation between recombination rate and polymorphism, although analyses of loci with at least 20 repeats suggested a weak positive correlation. Comparisons of microsatellites in lowest-recombination and highest-recombination regions also revealed no difference in levels of polymorphism. Together, these results indicate that background selection is not a major determinant of microsatellite variation in humans.
Full Text
The Full Text of this article is available as a PDF (314.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
- Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banchs I., Bosch A., Guimerà J., Lázaro C., Puig A., Estivill X. New alleles at microsatellite loci in CEPH families mainly arise from somatic mutations in the lymphoblastoid cell lines. Hum Mutat. 1994;3(4):365–372. doi: 10.1002/humu.1380030407. [DOI] [PubMed] [Google Scholar]
- Begovich A. B., McClure G. R., Suraj V. C., Helmuth R. C., Fildes N., Bugawan T. L., Erlich H. A., Klitz W. Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. J Immunol. 1992 Jan 1;148(1):249–258. [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991 Dec;129(4):1147–1158. doi: 10.1093/genetics/129.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry A. J., Ajioka J. W., Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. doi: 10.1093/genetics/129.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird A. P. Gene number, noise reduction and biological complexity. Trends Genet. 1995 Mar;11(3):94–100. doi: 10.1016/S0168-9525(00)89009-5. [DOI] [PubMed] [Google Scholar]
- Brinkmann B., Klintschar M., Neuhuber F., Hühne J., Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998 Jun;62(6):1408–1415. doi: 10.1086/301869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
- Collins A., Frezal J., Teague J., Morton N. E. A metric map of humans: 23,500 loci in 850 bands. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14771–14775. doi: 10.1073/pnas.93.25.14771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deloukas P., Schuler G. D., Gyapay G., Beasley E. M., Soderlund C., Rodriguez-Tomé P., Hui L., Matise T. C., McKusick K. B., Beckmann J. S. A physical map of 30,000 human genes. Science. 1998 Oct 23;282(5389):744–746. doi: 10.1126/science.282.5389.744. [DOI] [PubMed] [Google Scholar]
- Di Rienzo A., Donnelly P., Toomajian C., Sisk B., Hill A., Petzl-Erler M. L., Haines G. K., Barch D. H. Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics. 1998 Mar;148(3):1269–1284. doi: 10.1093/genetics/148.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
- Dunham I., Shimizu N., Roe B. A., Chissoe S., Hunt A. R., Collins J. E., Bruskiewich R., Beare D. M., Clamp M., Smink L. J. The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489–495. doi: 10.1038/990031. [DOI] [PubMed] [Google Scholar]
- Dvorák J., Luo M. C., Yang Z. L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species. Genetics. 1998 Jan;148(1):423–434. doi: 10.1093/genetics/148.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gyapay G., Schmitt K., Fizames C., Jones H., Vega-Czarny N., Spillett D., Muselet D., Prud'homme J. F., Dib C., Auffray C. A radiation hybrid map of the human genome. Hum Mol Genet. 1996 Mar;5(3):339–346. doi: 10.1093/hmg/5.3.339. [DOI] [PubMed] [Google Scholar]
- Hammer M. F. A recent common ancestry for human Y chromosomes. Nature. 1995 Nov 23;378(6555):376–378. doi: 10.1038/378376a0. [DOI] [PubMed] [Google Scholar]
- Harding R. M., Fullerton S. M., Griffiths R. C., Bond J., Cox M. J., Schneider J. A., Moulin D. S., Clegg J. B. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am J Hum Genet. 1997 Apr;60(4):772–789. [PMC free article] [PubMed] [Google Scholar]
- Hattori M., Fujiyama A., Taylor T. D., Watanabe H., Yada T., Park H. S., Toyoda A., Ishii K., Totoki Y., Choi D. K. The DNA sequence of human chromosome 21. Nature. 2000 May 18;405(6784):311–319. doi: 10.1038/35012518. [DOI] [PubMed] [Google Scholar]
- Hudson R. R., Kaplan N. L. Deleterious background selection with recombination. Genetics. 1995 Dec;141(4):1605–1617. doi: 10.1093/genetics/141.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kliman R. M., Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. doi: 10.1093/oxfordjournals.molbev.a040074. [DOI] [PubMed] [Google Scholar]
- Kraft T., Säll T., Magnusson-Rading I., Nilsson N. O., Halldén C. Positive correlation between recombination rates and levels of genetic variation in natural populations of sea beet (Beta vulgaris subsp. maritima). Genetics. 1998 Nov;150(3):1239–1244. doi: 10.1093/genetics/150.3.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran P. A. Wandering distributions and the electrophoretic profile. Theor Popul Biol. 1975 Dec;8(3):318–330. doi: 10.1016/0040-5809(75)90049-0. [DOI] [PubMed] [Google Scholar]
- Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
- Nachman M. W., Bauer V. L., Crowell S. L., Aquadro C. F. DNA variability and recombination rates at X-linked loci in humans. Genetics. 1998 Nov;150(3):1133–1141. doi: 10.1093/genetics/150.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman M. W., Churchill G. A. Heterogeneity in rates of recombination across the mouse genome. Genetics. 1996 Feb;142(2):537–548. doi: 10.1093/genetics/142.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman M. W. Patterns of DNA variability at X-linked loci in Mus domesticus. Genetics. 1997 Nov;147(3):1303–1316. doi: 10.1093/genetics/147.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagaraja R., MacMillan S., Kere J., Jones C., Griffin S., Schmatz M., Terrell J., Shomaker M., Jermak C., Hott C. X chromosome map at 75-kb STS resolution, revealing extremes of recombination and GC content. Genome Res. 1997 Mar;7(3):210–222. doi: 10.1101/gr.7.3.210. [DOI] [PubMed] [Google Scholar]
- Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
- Oudet C., Hanauer A., Clemens P., Caskey T., Mandel J. L. Two hot spots of recombination in the DMD gene correlate with the deletion prone regions. Hum Mol Genet. 1992 Nov;1(8):599–603. doi: 10.1093/hmg/1.8.599. [DOI] [PubMed] [Google Scholar]
- Przeworski M., Hudson R. R., Di Rienzo A. Adjusting the focus on human variation. Trends Genet. 2000 Jul;16(7):296–302. doi: 10.1016/s0168-9525(00)02030-8. [DOI] [PubMed] [Google Scholar]
- Schug M. D., Hutter C. M., Noor M. A., Aquadro C. F. Mutation and evolution of microsatellites in Drosophila melanogaster. Genetica. 1998;102-103(1-6):359–367. [PubMed] [Google Scholar]
- Schug M. D., Mackay T. F., Aquadro C. F. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nat Genet. 1997 Jan;15(1):99–102. doi: 10.1038/ng0197-99. [DOI] [PubMed] [Google Scholar]
- Slatkin M. Hitchhiking and associative overdominance at a microsatellite locus. Mol Biol Evol. 1995 May;12(3):473–480. doi: 10.1093/oxfordjournals.molbev.a040222. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Stephan W. An improved method for estimating the rate of fixation of favorable mutations based on DNA polymorphism data. Mol Biol Evol. 1995 Sep;12(5):959–962. doi: 10.1093/oxfordjournals.molbev.a040274. [DOI] [PubMed] [Google Scholar]
- Stephan W., Langley C. H. DNA polymorphism in lycopersicon and crossing-over per physical length. Genetics. 1998 Dec;150(4):1585–1593. doi: 10.1093/genetics/150.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart E. A., McKusick K. B., Aggarwal A., Bajorek E., Brady S., Chu A., Fang N., Hadley D., Harris M., Hussain S. An STS-based radiation hybrid map of the human genome. Genome Res. 1997 May;7(5):422–433. doi: 10.1101/gr.7.5.422. [DOI] [PubMed] [Google Scholar]
- Teague J. W., Collins A., Morton N. E. Studies on locus content mapping. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11814–11818. doi: 10.1073/pnas.93.21.11814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L. H., Collins A., Lawrence S., Keats B. J., Morton N. E. Integration of gene maps: chromosome X. Genomics. 1994 Aug;22(3):590–604. doi: 10.1006/geno.1994.1432. [DOI] [PubMed] [Google Scholar]
- Weber J. L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics. 1990 Aug;7(4):524–530. doi: 10.1016/0888-7543(90)90195-z. [DOI] [PubMed] [Google Scholar]