Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):2093–2107. doi: 10.1093/genetics/156.4.2093

Detecting the undetected: estimating the total number of loci underlying a quantitative trait.

S P Otto 1, C D Jones 1
PMCID: PMC1461347  PMID: 11102398

Abstract

Recent studies have begun to reveal the genes underlying quantitative trait differences between closely related populations. Not all quantitative trait loci (QTL) are, however, equally likely to be detected. QTL studies involve a limited number of crosses, individuals, and genetic markers and, as a result, often have little power to detect genetic factors of small to moderate effects. In this article, we develop an estimator for the total number of fixed genetic differences between two parental lines. Like the Castle-Wright estimator, which is based on the observed segregation variance in classical crossbreeding experiments, our QTL-based estimator requires that a distribution be specified for the expected effect sizes of the underlying loci. We use this expected distribution and the observed mean and minimum effect size of the detected QTL in a likelihood model to estimate the total number of loci underlying the trait difference. We then test the QTL-based estimator and the Castle-Wright estimator in Monte Carlo simulations. When the assumptions of the simulations match those of the model, both estimators perform well on average. The 95% confidence limits of the Castle-Wright estimator, however, often excluded the true number of underlying loci, while the confidence limits for the QTL-based estimator typically included the true value approximately 95% of the time. Furthermore, we found that the QTL-based estimator was less sensitive to dominance and to allelic effects of opposite sign than the Castle-Wright estimator. We therefore suggest that the QTL-based estimator be used to assess how many loci may have been missed in QTL studies.

Full Text

The Full Text of this article is available as a PDF (307.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradshaw H. D., Jr, Otto K. G., Frewen B. E., McKay J. K., Schemske D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics. 1998 May;149(1):367–382. doi: 10.1093/genetics/149.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doebley J., Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991 Sep;129(1):285–295. doi: 10.1093/genetics/129.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lande R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics. 1981 Nov-Dec;99(3-4):541–553. doi: 10.1093/genetics/99.3-4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laurie C. C., True J. R., Liu J., Mercer J. M. An introgression analysis of quantitative trait loci that contribute to a morphological difference between Drosophila simulans and D. mauritiana. Genetics. 1997 Feb;145(2):339–348. doi: 10.1093/genetics/145.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leips J., Mackay T. F. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics. 2000 Aug;155(4):1773–1788. doi: 10.1093/genetics/155.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liu J., Mercer J. M., Stam L. F., Gibson G. C., Zeng Z. B., Laurie C. C. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics. 1996 Apr;142(4):1129–1145. doi: 10.1093/genetics/142.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mackay T. F. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. Bioessays. 1996 Feb;18(2):113–121. doi: 10.1002/bies.950180207. [DOI] [PubMed] [Google Scholar]
  11. Orr H. A. The evolutionary genetics of adaptation: a simulation study. Genet Res. 1999 Dec;74(3):207–214. doi: 10.1017/s0016672399004164. [DOI] [PubMed] [Google Scholar]
  12. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zeng Z. B., Liu J., Stam L. F., Kao C. H., Mercer J. M., Laurie C. C. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics. 2000 Jan;154(1):299–310. doi: 10.1093/genetics/154.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES