Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):1519–1529. doi: 10.1093/genetics/156.4.1519

Accumulation of phosphorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae.

S Kim 1, H Fyrst 1, J Saba 1
PMCID: PMC1461366  PMID: 11102354

Abstract

Sphingolipid metabolites in mammals can function as signaling molecules with cell-specific functions. In Saccharomyces cerevisiae, phosphorylated long chain bases, such as dihydrosphingosine 1-phosphate and phytosphingosine 1-phosphate, have also been implicated in stress responses. To further explore the biological roles of these molecules, we created disruption mutants for LCB4, LCB5, DPL1, YSR2, YSR3, and SUR2. LCB4 and LCB5 encode kinases that phosphorylate long chain bases. DPL1 and YSR2/YSR3 are involved in degradation of the phosphorylated long chain bases. SUR2 catalyzes conversion of dihydrosphingosine to phytosphingosine. We adapted an HPLC method to measure intracellular concentrations of the phosphorylated long chain bases. Double mutants of dpl1 and ysr2 were inviable, whereas dpl1 ysr2 lcb4 triple mutants were viable. Further, growth inhibition associated with accumulated phosphorylated long chain bases was observed in the triple mutant dpl1 ysr2 lcb4 overexpressing LCB4 or LCB5. These results indicate that phosphorylated long chain bases can inhibit cell growth. Mutants defective in both YSR2 and SUR2, which accumulated dihydrosphingosine 1-phosphate only, grew poorly. The phenotypes of the ysr2 sur2 mutants were suppressed by overexpression of DPL1. Our results clearly show that elevated levels of phosphorylated long chain bases have an antiproliferative effect in yeast.

Full Text

The Full Text of this article is available as a PDF (445.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Jul 11;21(14):3329–3330. doi: 10.1093/nar/21.14.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caligan T. B., Peters K., Ou J., Wang E., Saba J., Merrill A. H., Jr A high-performance liquid chromatographic method to measure sphingosine 1-phosphate and related compounds from sphingosine kinase assays and other biological samples. Anal Biochem. 2000 May 15;281(1):36–44. doi: 10.1006/abio.2000.4555. [DOI] [PubMed] [Google Scholar]
  3. Chung N., Obeid L. M. Use of yeast as a model system for studies of sphingolipid metabolism and signaling. Methods Enzymol. 2000;311:319–331. doi: 10.1016/s0076-6879(00)11093-6. [DOI] [PubMed] [Google Scholar]
  4. Cliften P., Wang Y., Mochizuki D., Miyakawa T., Wangspa R., Hughes J., Takemoto J. Y. SYR2, a gene necessary for syringomycin growth inhibition of Saccharomyces cerevisiae. Microbiology. 1996 Mar;142(Pt 3):477–484. doi: 10.1099/13500872-142-3-477. [DOI] [PubMed] [Google Scholar]
  5. Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996 Jun 27;381(6585):800–803. doi: 10.1038/381800a0. [DOI] [PubMed] [Google Scholar]
  6. Cuvillier O., Rosenthal D. S., Smulson M. E., Spiegel S. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J Biol Chem. 1998 Jan 30;273(5):2910–2916. doi: 10.1074/jbc.273.5.2910. [DOI] [PubMed] [Google Scholar]
  7. Desfarges L., Durrens P., Juguelin H., Cassagne C., Bonneu M., Aigle M. Yeast mutants affected in viability upon starvation have a modified phospholipid composition. Yeast. 1993 Mar;9(3):267–277. doi: 10.1002/yea.320090306. [DOI] [PubMed] [Google Scholar]
  8. Gottlieb D., Heideman W., Saba J. D. The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae. Mol Cell Biol Res Commun. 1999 Apr;1(1):66–71. doi: 10.1006/mcbr.1999.0109. [DOI] [PubMed] [Google Scholar]
  9. Gómez-Muñoz A., Waggoner D. W., O'Brien L., Brindley D. N. Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. J Biol Chem. 1995 Nov 3;270(44):26318–26325. doi: 10.1074/jbc.270.44.26318. [DOI] [PubMed] [Google Scholar]
  10. Haak D., Gable K., Beeler T., Dunn T. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem. 1997 Nov 21;272(47):29704–29710. doi: 10.1074/jbc.272.47.29704. [DOI] [PubMed] [Google Scholar]
  11. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  12. Heitman J., Movva N. R., Hiestand P. C., Hall M. N. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1948–1952. doi: 10.1073/pnas.88.5.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kupperman E., An S., Osborne N., Waldron S., Stainier D. Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature. 2000 Jul 13;406(6792):192–195. doi: 10.1038/35018092. [DOI] [PubMed] [Google Scholar]
  14. Lee M. J., Thangada S., Claffey K. P., Ancellin N., Liu C. H., Kluk M., Volpi M., Sha'afi R. I., Hla T. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999 Oct 29;99(3):301–312. doi: 10.1016/s0092-8674(00)81661-x. [DOI] [PubMed] [Google Scholar]
  15. Lee M. J., Van Brocklyn J. R., Thangada S., Liu C. H., Hand A. R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998 Mar 6;279(5356):1552–1555. doi: 10.1126/science.279.5356.1552. [DOI] [PubMed] [Google Scholar]
  16. Lorenz M. C., Muir R. S., Lim E., McElver J., Weber S. C., Heitman J. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene. 1995 May 26;158(1):113–117. doi: 10.1016/0378-1119(95)00144-u. [DOI] [PubMed] [Google Scholar]
  17. Mandala S. M., Thornton R., Tu Z., Kurtz M. B., Nickels J., Broach J., Menzeleev R., Spiegel S. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):150–155. doi: 10.1073/pnas.95.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mao C., Wadleigh M., Jenkins G. M., Hannun Y. A., Obeid L. M. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem. 1997 Nov 7;272(45):28690–28694. doi: 10.1074/jbc.272.45.28690. [DOI] [PubMed] [Google Scholar]
  19. Nagiec M. M., Skrzypek M., Nagiec E. E., Lester R. L., Dickson R. C. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem. 1998 Jul 31;273(31):19437–19442. doi: 10.1074/jbc.273.31.19437. [DOI] [PubMed] [Google Scholar]
  20. Perry D. K., Hannun Y. A. The role of ceramide in cell signaling. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):233–243. doi: 10.1016/s0005-2760(98)00145-3. [DOI] [PubMed] [Google Scholar]
  21. Qie L., Nagiec M. M., Baltisberger J. A., Lester R. L., Dickson R. C. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids. J Biol Chem. 1997 Jun 27;272(26):16110–16117. doi: 10.1074/jbc.272.26.16110. [DOI] [PubMed] [Google Scholar]
  22. Riboni L., Viani P., Bassi R., Prinetti A., Tettamanti G. The role of sphingolipids in the process of signal transduction. Prog Lipid Res. 1997 Sep;36(2-3):153–195. doi: 10.1016/s0163-7827(97)00008-8. [DOI] [PubMed] [Google Scholar]
  23. Saba J. D., Nara F., Bielawska A., Garrett S., Hannun Y. A. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem. 1997 Oct 17;272(42):26087–26090. doi: 10.1074/jbc.272.42.26087. [DOI] [PubMed] [Google Scholar]
  24. Sadahira Y., Ruan F., Hakomori S., Igarashi Y. Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9686–9690. doi: 10.1073/pnas.89.20.9686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Skrzypek M. S., Nagiec M. M., Lester R. L., Dickson R. C. Analysis of phosphorylated sphingolipid long-chain bases reveals potential roles in heat stress and growth control in Saccharomyces. J Bacteriol. 1999 Feb;181(4):1134–1140. doi: 10.1128/jb.181.4.1134-1140.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol. 1999 Mar;65(3):341–344. doi: 10.1002/jlb.65.3.341. [DOI] [PubMed] [Google Scholar]
  27. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  28. Wang F., Van Brocklyn J. R., Edsall L., Nava V. E., Spiegel S. Sphingosine-1-phosphate inhibits motility of human breast cancer cells independently of cell surface receptors. Cancer Res. 1999 Dec 15;59(24):6185–6191. [PubMed] [Google Scholar]
  29. Werner-Washburne M., Braun E., Johnston G. C., Singer R. A. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1993 Jun;57(2):383–401. doi: 10.1128/mr.57.2.383-401.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhang H., Desai N. N., Olivera A., Seki T., Brooker G., Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol. 1991 Jul;114(1):155–167. doi: 10.1083/jcb.114.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zondag G. C., Postma F. R., Etten I. V., Verlaan I., Moolenaar W. H. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998 Mar 1;330(Pt 2):605–609. doi: 10.1042/bj3300605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Koppen C., Meyer zu Heringdorf M., Laser K. T., Zhang C., Jakobs K. H., Bünemann M., Pott L. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem. 1996 Jan 26;271(4):2082–2087. doi: 10.1074/jbc.271.4.2082. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES