Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):1983–1995. doi: 10.1093/genetics/156.4.1983

FARE, a new family of foldback transposons in Arabidopsis.

A J Windsor 1, C S Waddell 1
PMCID: PMC1461375  PMID: 11102389

Abstract

A new family of transposons, FARE, has been identified in Arabidopsis. The structure of these elements is typical of foldback transposons, a distinct subset of mobile DNA elements found in both plants and animals. The ends of FARE elements are long, conserved inverted repeat sequences typically 550 bp in length. These inverted repeats are modular in organization and are predicted to confer extensive secondary structure to the elements. FARE elements are present in high copy number, are heterogeneous in size, and can be divided into two subgroups. FARE1's average 1.1 kb in length and are composed entirely of the long inverted repeats. FARE2's are larger, up to 16.7 kb in length, and contain a large internal region in addition to the inverted repeat ends. The internal region is predicted to encode three proteins, one of which bears homology to a known transposase. FARE1.1 was isolated as an insertion polymorphism between the ecotypes Columbia and Nossen. This, coupled with the presence of 9-bp target-site duplications, strongly suggests that FARE elements have transposed recently. The termini of FARE elements and other foldback transposons are imperfect palindromic sequences, a unique organization that further distinguishes these elements from other mobile DNAs.

Full Text

The Full Text of this article is available as a PDF (703.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adé J., Belzile F. J. Hairpin elements, the first family of foldback transposons (FTs) in Arabidopsis thaliana. Plant J. 1999 Sep;19(5):591–597. doi: 10.1046/j.1365-313x.1999.00567.x. [DOI] [PubMed] [Google Scholar]
  2. Beall E. L., Rio D. C. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev. 1997 Aug 15;11(16):2137–2151. doi: 10.1101/gad.11.16.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benito M. I., Walbot V. Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol. 1997 Sep;17(9):5165–5175. doi: 10.1128/mcb.17.9.5165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bureau T. E., Ronald P. C., Wessler S. R. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8524–8529. doi: 10.1073/pnas.93.16.8524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bureau T. E., Wessler S. R. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell. 1992 Oct;4(10):1283–1294. doi: 10.1105/tpc.4.10.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burge C., Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997 Apr 25;268(1):78–94. doi: 10.1006/jmbi.1997.0951. [DOI] [PubMed] [Google Scholar]
  7. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  8. Eisen J. A., Benito M. I., Walbot V. Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res. 1994 Jul 11;22(13):2634–2636. doi: 10.1093/nar/22.13.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorbunova V., Levy A. A. Circularized Ac/Ds transposons: formation, structure and fate. Genetics. 1997 Apr;145(4):1161–1169. doi: 10.1093/genetics/145.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harden N., Ashburner M. Characterization of the FB-NOF transposable element of Drosophila melanogaster. Genetics. 1990 Oct;126(2):387–400. doi: 10.1093/genetics/126.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hedtke B., Börner T., Weihe A. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science. 1997 Aug 8;277(5327):809–811. doi: 10.1126/science.277.5327.809. [DOI] [PubMed] [Google Scholar]
  12. Hoffman-Liebermann B., Liebermann D., Kedes L. H., Cohen S. N. TU elements: a heterogeneous family of modularly structured eucaryotic transposons. Mol Cell Biol. 1985 May;5(5):991–1001. doi: 10.1128/mcb.5.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz R. A., Jentoft J. E. What is the role of the cys-his motif in retroviral nucleocapsid (NC) proteins? Bioessays. 1989 Dec;11(6):176–181. doi: 10.1002/bies.950110605. [DOI] [PubMed] [Google Scholar]
  14. Le Q. H., Wright S., Yu Z., Bureau T. Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7376–7381. doi: 10.1073/pnas.97.13.7376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin X., Kaul S., Rounsley S., Shea T. P., Benito M. I., Town C. D., Fujii C. Y., Mason T., Bowman C. L., Barnstead M. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. doi: 10.1038/45471. [DOI] [PubMed] [Google Scholar]
  16. Lovering R., Harden N., Ashburner M. The molecular structure of TE146 and its derivatives in Drosophila melanogaster. Genetics. 1991 Jun;128(2):357–372. doi: 10.1093/genetics/128.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G., Pohl T., Düsterhöft A., Stiekema W., Entian K. D., Terryn N. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):769–777. doi: 10.1038/47134. [DOI] [PubMed] [Google Scholar]
  18. Parinov S., Sevugan M., Ye D., Yang W. C., Kumaran M., Sundaresan V. Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell. 1999 Dec;11(12):2263–2270. doi: 10.1105/tpc.11.12.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pingoud A., Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem. 1997 May 15;246(1):1–22. doi: 10.1111/j.1432-1033.1997.t01-6-00001.x. [DOI] [PubMed] [Google Scholar]
  20. Potter S. S. DNA sequence of a foldback transposable element in Drosophila. Nature. 1982 May 20;297(5863):201–204. doi: 10.1038/297201a0. [DOI] [PubMed] [Google Scholar]
  21. Potter S., Heineke B., Kaur S., Jones G., Lloyd J., McNeish J., Mucenski M., Scott W., Smyth-Templeton N., Stock J. Drosophila foldback elements, primate L1 elements, and transgenic mice. Prog Nucleic Acid Res Mol Biol. 1989;36:3–23. doi: 10.1016/s0079-6603(08)60157-9. [DOI] [PubMed] [Google Scholar]
  22. Rebatchouk D., Narita J. O. Foldback transposable elements in plants. Plant Mol Biol. 1997 Jul;34(5):831–835. doi: 10.1023/a:1005855008823. [DOI] [PubMed] [Google Scholar]
  23. SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Silber J., Bazin C., Lemeunier F., Aulard S., Volovitch M. Distribution and conservation of the foldback transposable element in Drosophila. J Mol Evol. 1989 Mar;28(3):220–224. doi: 10.1007/BF02102479. [DOI] [PubMed] [Google Scholar]
  25. Truett M. A., Jones R. S., Potter S. S. Unusual structure of the FB family of transposable elements in Drosophila. Cell. 1981 Jun;24(3):753–763. doi: 10.1016/0092-8674(81)90101-x. [DOI] [PubMed] [Google Scholar]
  26. Xu H. P., Rajavashisth T., Grewal N., Jung V., Riggs M., Rodgers L., Wigler M. A gene encoding a protein with seven zinc finger domains acts on the sexual differentiation pathways of Schizosaccharomyces pombe. Mol Biol Cell. 1992 Jul;3(7):721–734. doi: 10.1091/mbc.3.7.721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES