Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):2019–2031. doi: 10.1093/genetics/156.4.2019

Mutator-like elements in Arabidopsis thaliana. Structure, diversity and evolution.

Z Yu 1, S I Wright 1, T E Bureau 1
PMCID: PMC1461377  PMID: 11102392

Abstract

While genome-wide surveys of abundance and diversity of mobile elements have been conducted for some class I transposable element families, little is known about the nature of class II transposable elements on this scale. In this report, we present the results from analysis of the sequence and structural diversity of Mutator-like elements (MULEs) in the genome of Arabidopsis thaliana (Columbia). Sequence similarity searches and subsequent characterization suggest that MULEs exhibit extreme structure, sequence, and size heterogeneity. Multiple alignments at the nucleotide and amino acid levels reveal conserved, potentially transposition-related sequence motifs. While many MULEs share common structural features to Mu elements in maize, some groups lack characteristic long terminal inverted repeats. High sequence similarity and phylogenetic analyses based on nucleotide sequence alignments indicate that many of these elements with diverse structural features may remain transpositionally competent and that multiple MULE lineages may have been evolving independently over long time scales. Finally, there is evidence that MULEs are capable of the acquisition of host DNA segments, which may have implications for adaptive evolution, both at the element and host levels.

Full Text

The Full Text of this article is available as a PDF (755.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bateman A., Birney E., Durbin R., Eddy S. R., Howe K. L., Sonnhammer E. L. The Pfam protein families database. Nucleic Acids Res. 2000 Jan 1;28(1):263–266. doi: 10.1093/nar/28.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker H. A., Kunze R. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. Mol Gen Genet. 1996 Jun 24;251(4):428–435. doi: 10.1007/BF02172371. [DOI] [PubMed] [Google Scholar]
  4. Berg J. M. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. doi: 10.1126/science.2421409. [DOI] [PubMed] [Google Scholar]
  5. Besansky N. J., Paskewitz S. M., Hamm D. M., Collins F. H. Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol Cell Biol. 1992 Nov;12(11):5102–5110. doi: 10.1128/mcb.12.11.5102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bureau T. E., Wessler S. R. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1411–1415. doi: 10.1073/pnas.91.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bureau T. E., White S. E., Wessler S. R. Transduction of a cellular gene by a plant retroelement. Cell. 1994 May 20;77(4):479–480. doi: 10.1016/0092-8674(94)90210-0. [DOI] [PubMed] [Google Scholar]
  8. Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Covey S. N. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res. 1986 Jan 24;14(2):623–633. doi: 10.1093/nar/14.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
  11. Davies D. R., Goryshin I. Y., Reznikoff W. S., Rayment I. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science. 2000 Jul 7;289(5476):77–85. doi: 10.1126/science.289.5476.77. [DOI] [PubMed] [Google Scholar]
  12. Eisen J. A., Benito M. I., Walbot V. Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res. 1994 Jul 11;22(13):2634–2636. doi: 10.1093/nar/22.13.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fu X. D. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature. 1993 Sep 2;365(6441):82–85. doi: 10.1038/365082a0. [DOI] [PubMed] [Google Scholar]
  14. Gao F., Robertson D. L., Carruthers C. D., Morrison S. G., Jian B., Chen Y., Barré-Sinoussi F., Girard M., Srinivasan A., Abimiku A. G. A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. J Virol. 1998 Jul;72(7):5680–5698. doi: 10.1128/jvi.72.7.5680-5698.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garrett J. E., Knutzon D. S., Carroll D. Composite transposable elements in the Xenopus laevis genome. Mol Cell Biol. 1989 Jul;9(7):3018–3027. doi: 10.1128/mcb.9.7.3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grandbastien M. A., Spielmann A., Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989 Jan 26;337(6205):376–380. doi: 10.1038/337376a0. [DOI] [PubMed] [Google Scholar]
  17. Gribskov M., McLachlan A. D., Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355–4358. doi: 10.1073/pnas.84.13.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haren L., Ton-Hoang B., Chandler M. Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol. 1999;53:245–281. doi: 10.1146/annurev.micro.53.1.245. [DOI] [PubMed] [Google Scholar]
  19. Heinrichs V., Baker B. S. The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J. 1995 Aug 15;14(16):3987–4000. doi: 10.1002/j.1460-2075.1995.tb00070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henikoff S., Greene E. A., Pietrokovski S., Bork P., Attwood T. K., Hood L. Gene families: the taxonomy of protein paralogs and chimeras. Science. 1997 Oct 24;278(5338):609–614. doi: 10.1126/science.278.5338.609. [DOI] [PubMed] [Google Scholar]
  21. Hershberger R. J., Benito M. I., Hardeman K. J., Warren C., Chandler V. L., Walbot V. Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics. 1995 Jul;140(3):1087–1098. doi: 10.1093/genetics/140.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hershberger R. J., Warren C. A., Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10198–10202. doi: 10.1073/pnas.88.22.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jacq C., Alt-Mörbe J., Andre B., Arnold W., Bahr A., Ballesta J. P., Bargues M., Baron L., Becker A., Biteau N. The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997 May 29;387(6632 Suppl):75–78. [PubMed] [Google Scholar]
  24. Jordan I. K., McDonald J. F. Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics. 1999 Apr;151(4):1341–1351. doi: 10.1093/genetics/151.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Le Q. H., Wright S., Yu Z., Bureau T. Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7376–7381. doi: 10.1073/pnas.97.13.7376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Levy A. A., Fridlender M., Rubin U. H., Sitrit Y. Binding of Nicotiana nuclear proteins to the subterminal regions of the Ac transposable element. Mol Gen Genet. 1996 Jun 24;251(4):436–441. doi: 10.1007/BF02172372. [DOI] [PubMed] [Google Scholar]
  27. Lin X., Kaul S., Rounsley S., Shea T. P., Benito M. I., Town C. D., Fujii C. Y., Mason T., Bowman C. L., Barnstead M. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. doi: 10.1038/45471. [DOI] [PubMed] [Google Scholar]
  28. Lisch D., Chomet P., Freeling M. Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics. 1995 Apr;139(4):1777–1796. doi: 10.1093/genetics/139.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lisch D., Girard L., Donlin M., Freeling M. Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics. 1999 Jan;151(1):331–341. doi: 10.1093/genetics/151.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lopato S., Gattoni R., Fabini G., Stevenin J., Barta A. A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities. Plant Mol Biol. 1999 Mar;39(4):761–773. doi: 10.1023/a:1006129615846. [DOI] [PubMed] [Google Scholar]
  31. Maes T, De Keukeleire P, Gerats T. Plant tagnology. Trends Plant Sci. 1999 Mar;4(3):90–96. doi: 10.1016/s1360-1385(99)01375-8. [DOI] [PubMed] [Google Scholar]
  32. Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G., Pohl T., Düsterhöft A., Stiekema W., Entian K. D., Terryn N. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):769–777. doi: 10.1038/47134. [DOI] [PubMed] [Google Scholar]
  33. Meinke D. W., Cherry J. M., Dean C., Rounsley S. D., Koornneef M. Arabidopsis thaliana: a model plant for genome analysis. Science. 1998 Oct 23;282(5389):662, 679-82. doi: 10.1126/science.282.5389.662. [DOI] [PubMed] [Google Scholar]
  34. Morgenstern B. DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics. 1999 Mar;15(3):211–218. doi: 10.1093/bioinformatics/15.3.211. [DOI] [PubMed] [Google Scholar]
  35. Nyyssönen E., Amutan M., Enfield L., Stubbs J., Dunn-Coleman N. S. The transposable element Tan1 of Aspergillus niger var. awamori, a new member of the Fot1 family. Mol Gen Genet. 1996 Nov 27;253(1-2):50–56. doi: 10.1007/s004380050295. [DOI] [PubMed] [Google Scholar]
  36. Ohtsubo F., Sekine Y. Bacterial insertion sequences. Curr Top Microbiol Immunol. 1996;204:1–26. doi: 10.1007/978-3-642-79795-8_1. [DOI] [PubMed] [Google Scholar]
  37. Plasterk R. H. The Tc1/mariner transposon family. Curr Top Microbiol Immunol. 1996;204:125–143. doi: 10.1007/978-3-642-79795-8_6. [DOI] [PubMed] [Google Scholar]
  38. Rajavashisth T. B., Taylor A. K., Andalibi A., Svenson K. L., Lusis A. J. Identification of a zinc finger protein that binds to the sterol regulatory element. Science. 1989 Aug 11;245(4918):640–643. doi: 10.1126/science.2562787. [DOI] [PubMed] [Google Scholar]
  39. Remacle J. E., Kraft H., Lerchner W., Wuytens G., Collart C., Verschueren K., Smith J. C., Huylebroeck D. New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J. 1999 Sep 15;18(18):5073–5084. doi: 10.1093/emboj/18.18.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  41. Ruberti I., Sessa G., Lucchetti S., Morelli G. A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 1991 Jul;10(7):1787–1791. doi: 10.1002/j.1460-2075.1991.tb07703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sacco M. A., Flannery D. M., Howes K., Venugopal K. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J Virol. 2000 Feb;74(3):1296–1306. doi: 10.1128/jvi.74.3.1296-1306.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schena M., Davis R. W. Structure of homeobox-leucine zipper genes suggests a model for the evolution of gene families. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8393–8397. doi: 10.1073/pnas.91.18.8393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwartz M. D., Fiore D., Panganiban A. T. Distinct functions and requirements for the Cys-His boxes of the human immunodeficiency virus type 1 nucleocapsid protein during RNA encapsidation and replication. J Virol. 1997 Dec;71(12):9295–9305. doi: 10.1128/jvi.71.12.9295-9305.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Talbert L. E., Chandler V. L. Characterization of a highly conserved sequence related to mutator transposable elements in maize. Mol Biol Evol. 1988 Sep;5(5):519–529. doi: 10.1093/oxfordjournals.molbev.a040510. [DOI] [PubMed] [Google Scholar]
  46. Talbert L. E., Patterson G. I., Chandler V. L. Mu transposable elements are structurally diverse and distributed throughout the genus Zea. J Mol Evol. 1989 Jul;29(1):28–39. doi: 10.1007/BF02106179. [DOI] [PubMed] [Google Scholar]
  47. Tatusova T. A., Madden T. L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 1999 May 15;174(2):247–250. doi: 10.1111/j.1574-6968.1999.tb13575.x. [DOI] [PubMed] [Google Scholar]
  48. Thomson K. G., Thomas J. E., Dietzgen R. G. Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus. Plant Mol Biol. 1998 Oct;38(3):461–465. doi: 10.1023/a:1006083200299. [DOI] [PubMed] [Google Scholar]
  49. Zhao Z. Y., Sundaresan V. Binding sites for maize nuclear proteins in the terminal inverted repeats of the Mu1 transposable element. Mol Gen Genet. 1991 Sep;229(1):17–26. doi: 10.1007/BF00264208. [DOI] [PubMed] [Google Scholar]
  50. Zuker C., Cappello J., Lodish H. F., George P., Chung S. Dictyostelium transposable element DIRS-1 has 350-base-pair inverted terminal repeats that contain a heat shock promoter. Proc Natl Acad Sci U S A. 1984 May;81(9):2660–2664. doi: 10.1073/pnas.81.9.2660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. van Pouderoyen G., Ketting R. F., Perrakis A., Plasterk R. H., Sixma T. K. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA. EMBO J. 1997 Oct 1;16(19):6044–6054. doi: 10.1093/emboj/16.19.6044. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES