Abstract
The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG(-) mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype.
Full Text
The Full Text of this article is available as a PDF (548.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albig W., Entian K. D. Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Gene. 1988 Dec 15;73(1):141–152. doi: 10.1016/0378-1119(88)90320-4. [DOI] [PubMed] [Google Scholar]
- Andrianopoulos A., Hynes M. J. Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol. 1988 Aug;8(8):3532–3541. doi: 10.1128/mcb.8.8.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arora K. K., Fanciulli M., Pedersen P. L. Glucose phosphorylation in tumor cells. Cloning, sequencing, and overexpression in active form of a full-length cDNA encoding a mitochondrial bindable form of hexokinase. J Biol Chem. 1990 Apr 15;265(11):6481–6488. [PubMed] [Google Scholar]
- Arst H. N., Jr, Cove D. J. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 2;126(2):111–141. doi: 10.1007/BF00330988. [DOI] [PubMed] [Google Scholar]
- Bajwa W., Torchia T. E., Hopper J. E. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol. 1988 Aug;8(8):3439–3447. doi: 10.1128/mcb.8.8.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berka R. M., Ward M., Wilson L. J., Hayenga K. J., Kodama K. H., Carlomagno L. P., Thompson S. A. Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene. 1990 Feb 14;86(2):153–162. doi: 10.1016/0378-1119(90)90274-u. [DOI] [PubMed] [Google Scholar]
- Bisson L. F., Fraenkel D. G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730–1734. doi: 10.1073/pnas.80.6.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bork P., Sander C., Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 1993 Jan;2(1):31–40. doi: 10.1002/pro.5560020104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen B. L. Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans. J Gen Microbiol. 1973 Dec;79(2):311–320. doi: 10.1099/00221287-79-2-311. [DOI] [PubMed] [Google Scholar]
- Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
- Deeb S. S., Malkki M., Laakso M. Human hexokinase II: sequence and homology to other hexokinases. Biochem Biophys Res Commun. 1993 Nov 30;197(1):68–74. doi: 10.1006/bbrc.1993.2442. [DOI] [PubMed] [Google Scholar]
- Entian K. D. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet. 1980;178(3):633–637. doi: 10.1007/BF00337871. [DOI] [PubMed] [Google Scholar]
- Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 1996;266:418–427. doi: 10.1016/s0076-6879(96)66026-1. [DOI] [PubMed] [Google Scholar]
- Fidel S., Doonan J. H., Morris N. R. Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a gamma-actin. Gene. 1988 Oct 30;70(2):283–293. doi: 10.1016/0378-1119(88)90200-4. [DOI] [PubMed] [Google Scholar]
- Fröhlich K. U., Entian K. D., Mecke D. The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene. 1985;36(1-2):105–111. doi: 10.1016/0378-1119(85)90074-5. [DOI] [PubMed] [Google Scholar]
- Furuta H., Nishi S., Le Beau M. M., Fernald A. A., Yano H., Bell G. I. Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35.2 by fluorescence in situ hybridization. Genomics. 1996 Aug 15;36(1):206–209. doi: 10.1006/geno.1996.0448. [DOI] [PubMed] [Google Scholar]
- German M. S. Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1781–1785. doi: 10.1073/pnas.90.5.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin L. D., Gelb B. D., Wheeler D. A., Davison D., Adams V., McCabe E. R. Mammalian hexokinase 1: evolutionary conservation and structure to function analysis. Genomics. 1991 Dec;11(4):1014–1024. doi: 10.1016/0888-7543(91)90027-c. [DOI] [PubMed] [Google Scholar]
- Heikkinen S., Pietilä M., Halmekytö M., Suppola S., Pirinen E., Deeb S. S., Jänne J., Laakso M. Hexokinase II-deficient mice. Prenatal death of homozygotes without disturbances in glucose tolerance in heterozygotes. J Biol Chem. 1999 Aug 6;274(32):22517–22523. doi: 10.1074/jbc.274.32.22517. [DOI] [PubMed] [Google Scholar]
- Herrero P., Martínez-Campa C., Moreno F. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett. 1998 Aug 28;434(1-2):71–76. doi: 10.1016/s0014-5793(98)00872-2. [DOI] [PubMed] [Google Scholar]
- Hughes S. D., Quaade C., Milburn J. L., Cassidy L., Newgard C. B. Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells. J Biol Chem. 1991 Mar 5;266(7):4521–4530. [PubMed] [Google Scholar]
- Hull E. P., Green P. M., Arst H. N., Jr, Scazzocchio C. Cloning and physical characterization of the L-proline catabolism gene cluster of Aspergillus nidulans. Mol Microbiol. 1989 Apr;3(4):553–559. doi: 10.1111/j.1365-2958.1989.tb00201.x. [DOI] [PubMed] [Google Scholar]
- Hynes M. J., Kelly J. M. Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet. 1977 Jan 18;150(2):193–204. doi: 10.1007/BF00695399. [DOI] [PubMed] [Google Scholar]
- Inoue H., Kimura T., Makabe O., Takahashi K. The gene and deduced protein sequences of the zymogen of Aspergillus niger acid proteinase A. J Biol Chem. 1991 Oct 15;266(29):19484–19489. [PubMed] [Google Scholar]
- Ishimura-Oka K., Nakamuta M., Chu M. J., Sullivan M., Chan L., Oka K. Partial structure of the mouse glucokinase gene. Genomics. 1995 Oct 10;29(3):751–754. doi: 10.1006/geno.1995.9942. [DOI] [PubMed] [Google Scholar]
- Jang J. C., León P., Zhou L., Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997 Jan;9(1):5–19. doi: 10.1105/tpc.9.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalderon D., Richardson W. D., Markham A. F., Smith A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 1984 Sep 6;311(5981):33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
- Katz M. E., Flynn P. K., vanKuyk P. A., Cheetham B. F. Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans. Mol Gen Genet. 1996 Apr 10;250(6):715–724. doi: 10.1007/BF02172983. [DOI] [PubMed] [Google Scholar]
- Katz M. E., Rice R. N., Cheetham B. F. Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene. 1994 Dec 15;150(2):287–292. doi: 10.1016/0378-1119(94)90439-1. [DOI] [PubMed] [Google Scholar]
- Kudla B., Caddick M. X., Langdon T., Martinez-Rossi N. M., Bennett C. F., Sibley S., Davies R. W., Arst H. N., Jr The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 1990 May;9(5):1355–1364. doi: 10.1002/j.1460-2075.1990.tb08250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam H. M., Peng S. S., Coruzzi G. M. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1347–1357. doi: 10.1104/pp.106.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maitra P. K., Lobo Z. Genetics of yeast glucokinase. Genetics. 1983 Nov;105(3):501–515. doi: 10.1093/genetics/105.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer J., Walker-Jonah A., Hollenberg C. P. Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Nov;11(11):5454–5461. doi: 10.1128/mcb.11.11.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mori C., Welch J. E., Fulcher K. D., O'Brien D. A., Eddy E. M. Unique hexokinase messenger ribonucleic acids lacking the porin-binding domain are developmentally expressed in mouse spermatogenic cells. Biol Reprod. 1993 Aug;49(2):191–203. doi: 10.1095/biolreprod49.2.191. [DOI] [PubMed] [Google Scholar]
- Nishi S., Seino S., Bell G. I. Human hexokinase: sequences of amino- and carboxyl-terminal halves are homologous. Biochem Biophys Res Commun. 1988 Dec 30;157(3):937–943. doi: 10.1016/s0006-291x(88)80964-1. [DOI] [PubMed] [Google Scholar]
- Oakley C. E., Weil C. F., Kretz P. L., Oakley B. R. Cloning of the riboB locus of Aspergillus nidulans. Gene. 1987;53(2-3):293–298. doi: 10.1016/0378-1119(87)90019-9. [DOI] [PubMed] [Google Scholar]
- Panneman H., Ruijter G. J., van den Broeck H. C., Driever E. T., Visser J. Cloning and biochemical characterisation of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur J Biochem. 1996 Sep 15;240(3):518–525. doi: 10.1111/j.1432-1033.1996.0518h.x. [DOI] [PubMed] [Google Scholar]
- Panneman H., Ruijter G. J., van den Broeck H. C., Visser J. Cloning and biochemical characterisation of Aspergillus niger hexokinase--the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur J Biochem. 1998 Nov 15;258(1):223–232. doi: 10.1046/j.1432-1327.1998.2580223.x. [DOI] [PubMed] [Google Scholar]
- Petit T., Blázquez M. A., Gancedo C. Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases. FEBS Lett. 1996 Jan 8;378(2):185–189. doi: 10.1016/0014-5793(95)01451-9. [DOI] [PubMed] [Google Scholar]
- Petit T., Gancedo C. Molecular cloning and characterization of the gene HXK1 encoding the hexokinase from Yarrowia lipolytica. Yeast. 1999 Nov;15(15):1573–1584. doi: 10.1002/(SICI)1097-0061(199911)15:15<1573::AID-YEA478>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Polkinghorne M., Hynes M. J. Mutants affecting histidine utilization in Aspergillus nidulans. Genet Res. 1975 Apr;25(2):119–135. doi: 10.1017/s0016672300015524. [DOI] [PubMed] [Google Scholar]
- Prade R. A., Griffith J., Kochut K., Arnold J., Timberlake W. E. In vitro reconstruction of the Aspergillus (= Emericella) nidulans genome. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14564–14569. doi: 10.1073/pnas.94.26.14564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prior C., Mamessier P., Fukuhara H., Chen X. J., Wesolowski-Louvel M. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol. 1993 Jul;13(7):3882–3889. doi: 10.1128/mcb.13.7.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rambosek J., Leach J. Recombinant DNA in filamentous fungi: progress and prospects. Crit Rev Biotechnol. 1987;6(4):357–393. doi: 10.3109/07388558709089387. [DOI] [PubMed] [Google Scholar]
- Reinert W. R., Patel V. B., Giles N. H. Genetic regulation of the qa gene cluster of Neurospora crassa: induction of qa messenger ribonucleic acid and dependency on qa-1 function. Mol Cell Biol. 1981 Sep;1(9):829–835. doi: 10.1128/mcb.1.9.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. Molecular and biochemical characterization of the hexokinase from the starch-utilizing yeast Schwanniomyces occidentalis. Curr Genet. 1995 Mar;27(4):330–338. doi: 10.1007/BF00352102. [DOI] [PubMed] [Google Scholar]
- Ruijter G. J., Panneman H., van den Broeck H. C., Bennett J. M., Visser J. Characterisation of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. FEMS Microbiol Lett. 1996 Jun 1;139(2-3):223–228. doi: 10.1111/j.1574-6968.1996.tb08206.x. [DOI] [PubMed] [Google Scholar]
- Sanz P., Nieto A., Prieto J. A. Glucose repression may involve processes with different sugar kinase requirements. J Bacteriol. 1996 Aug;178(15):4721–4723. doi: 10.1128/jb.178.15.4721-4723.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwab D. A., Wilson J. E. Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2563–2567. doi: 10.1073/pnas.86.8.2563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwab D. A., Wilson J. E. Complete amino acid sequence of the type III isozyme of rat hexokinase, deduced from the cloned cDNA. Arch Biochem Biophys. 1991 Mar;285(2):365–370. doi: 10.1016/0003-9861(91)90373-q. [DOI] [PubMed] [Google Scholar]
- Shoemaker C. B., Reynolds S. R., Wei G., Tielens A. G., Harn D. A. Schistosoma mansoni hexokinase: cDNA cloning and immunogenicity studies. Exp Parasitol. 1995 Feb;80(1):36–45. doi: 10.1006/expr.1995.1005. [DOI] [PubMed] [Google Scholar]
- Stoffel M., Froguel P., Takeda J., Zouali H., Vionnet N., Nishi S., Weber I. T., Harrison R. W., Pilkis S. J., Lesage S. Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7698–7702. doi: 10.1073/pnas.89.16.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatsumi H., Murakami S., Tsuji R. F., Ishida Y., Murakami K., Masaki A., Kawabe H., Arimura H., Nakano E., Motai H. Cloning and expression in yeast of a cDNA clone encoding Aspergillus oryzae neutral protease II, a unique metalloprotease. Mol Gen Genet. 1991 Aug;228(1-2):97–103. doi: 10.1007/BF00282453. [DOI] [PubMed] [Google Scholar]
- Tatsumi H., Ogawa Y., Murakami S., Ishida Y., Murakami K., Masaki A., Kawabe H., Arimura H., Nakano E., Motai H. A full length cDNA clone for the alkaline protease from Aspergillus oryzae: structural analysis and expression in Saccharomyces cerevisiae. Mol Gen Genet. 1989 Oct;219(1-2):33–38. doi: 10.1007/BF00261154. [DOI] [PubMed] [Google Scholar]
- Thelen A. P., Wilson J. E. Complete amino acid sequence of the type II isozyme of rat hexokinase, deduced from the cloned cDNA: comparison with a hexokinase from novikoff ascites tumor. Arch Biochem Biophys. 1991 May 1;286(2):645–651. doi: 10.1016/0003-9861(91)90094-y. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W. Transformation by integration in Aspergillus nidulans. Gene. 1983 Dec;26(2-3):205–221. doi: 10.1016/0378-1119(83)90191-9. [DOI] [PubMed] [Google Scholar]
- van den Hombergh J. P., Jarai G., Buxton F. P., Visser J. Cloning, characterization and expression of pepF, a gene encoding a serine carboxypeptidase from Aspergillus niger. Gene. 1994 Dec 30;151(1-2):73–79. doi: 10.1016/0378-1119(94)90634-3. [DOI] [PubMed] [Google Scholar]
- vanKuyk P. A., Cheetham B. F., Katz M. E. Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Fungal Genet Biol. 2000 Apr;29(3):201–210. doi: 10.1006/fgbi.2000.1195. [DOI] [PubMed] [Google Scholar]