Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):1573–1584. doi: 10.1093/genetics/156.4.1573

Extragenic suppressors of the nimX2(cdc2) mutation of Aspergillus nidulans affect nuclear division, septation and conidiation.

S L McGuire 1, D L Roe 1, B W Carter 1, R L Carter 1, S P Grace 1, P L Hays 1, G A Lang 1, J L Mamaril 1, A T McElvaine 1, A M Payne 1, M D Schrader 1, S E Wahrle 1, C D Young 1
PMCID: PMC1461382  PMID: 11102358

Abstract

The Aspergillus nidulans NIMX(CDC2) protein kinase has been shown to be required for both the G(2)/M and G(1)/S transitions, and recent evidence has implicated a role for NIMX(CDC2) in septation and conidiation. While much is understood of its G(2)/M function, little is known about the functions of NIMX(CDC2) during G(1)/S, septation, and conidiophore development. In an attempt to better understand how NIMX(CDC2) is involved in these processes, we have isolated four extragenic suppressors of the A. nidulans nimX2(cdc2) temperature-sensitive mutation. Mutation of these suppressor genes, designated snxA-snxD for suppressor of nimX, affects nuclear division, septation, and conidiation. The cold-sensitive snxA1 mutation leads to arrest of nuclear division during G(1) or early S. snxB1 causes hyperseptation in the hyphae and sensitivity to hydroxyurea, while snxC1 causes septation in the conidiophore stalk and aberrant conidiophore structure. snxD1 leads to slight septation defects and hydroxyurea sensitivity. The additional phenotypes that result from the suppressor mutations provide genetic evidence that NIMX(CDC2) affects septation and conidiation in addition to nuclear division, and cloning and biochemical analysis of these will allow a better understanding of the role of NIMX(CDC2) in these processes.

Full Text

The Full Text of this article is available as a PDF (406.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams T. H., Wieser J. K., Yu J. H. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998 Mar;62(1):35–54. doi: 10.1128/mmbr.62.1.35-54.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aguirre J. Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol Microbiol. 1993 Apr;8(2):211–218. doi: 10.1111/j.1365-2958.1993.tb01565.x. [DOI] [PubMed] [Google Scholar]
  3. Bergen L. G., Upshall A., Morris N. R. S-phase, G2, and nuclear division mutants of Aspergillus nidulans. J Bacteriol. 1984 Jul;159(1):114–119. doi: 10.1128/jb.159.1.114-119.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Souza C. P., Ye X. S., Osmani S. A. Checkpoint defects leading to premature mitosis also cause endoreplication of DNA in Aspergillus nidulans. Mol Biol Cell. 1999 Nov;10(11):3661–3674. doi: 10.1091/mbc.10.11.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fiddy C., Trinci A. P. Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol. 1976 Dec;97(2):169–184. doi: 10.1099/00221287-97-2-169. [DOI] [PubMed] [Google Scholar]
  6. Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
  7. Harris S. D., Kraus P. R. Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics. 1998 Mar;148(3):1055–1067. doi: 10.1093/genetics/148.3.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holt C. L., May G. S. An extragenic suppressor of the mitosis-defective bimD6 mutation of Aspergillus nidulans codes for a chromosome scaffold protein. Genetics. 1996 Mar;142(3):777–787. doi: 10.1093/genetics/142.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaminskyj S. G., Hamer J. E. hyp loci control cell pattern formation in the vegetative mycelium of Aspergillus nidulans. Genetics. 1998 Feb;148(2):669–680. doi: 10.1093/genetics/148.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Käfer E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet. 1977;19:33–131. doi: 10.1016/s0065-2660(08)60245-x. [DOI] [PubMed] [Google Scholar]
  11. Lies C. M., Cheng J., James S. W., Morris N. R., O'Connell M. J., Mirabito P. M. BIMAAPC3, a component of the Aspergillus anaphase promoting complex/cyclosome, is required for a G2 checkpoint blocking entry into mitosis in the absence of NIMA function. J Cell Sci. 1998 May;111(Pt 10):1453–1465. doi: 10.1242/jcs.111.10.1453. [DOI] [PubMed] [Google Scholar]
  12. MacNeill S. A., Creanor J., Nurse P. Isolation, characterisation and molecular cloning of new mutant alleles of the fission yeast p34cdc2+ protein kinase gene: identification of temperature-sensitive G2-arresting alleles. Mol Gen Genet. 1991 Sep;229(1):109–118. doi: 10.1007/BF00264219. [DOI] [PubMed] [Google Scholar]
  13. Mirabito P. M., Adams T. H., Timberlake W. E. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell. 1989 Jun 2;57(5):859–868. doi: 10.1016/0092-8674(89)90800-3. [DOI] [PubMed] [Google Scholar]
  14. Momany M., Westfall P. J., Abramowsky G. Aspergillus nidulans swo mutants show defects in polarity establishment, polarity maintenance and hyphal morphogenesis. Genetics. 1999 Feb;151(2):557–567. doi: 10.1093/genetics/151.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Osmani A. H., Osmani S. A., Morris N. R. The molecular cloning and identification of a gene product specifically required for nuclear movement in Aspergillus nidulans. J Cell Biol. 1990 Aug;111(2):543–551. doi: 10.1083/jcb.111.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Osmani A. H., van Peij N., Mischke M., O'Connell M. J., Osmani S. A. A single p34cdc2 protein kinase (encoded by nimXcdc2) is required at G1 and G2 in Aspergillus nidulans. J Cell Sci. 1994 Jun;107(Pt 6):1519–1528. doi: 10.1242/jcs.107.6.1519. [DOI] [PubMed] [Google Scholar]
  17. Osmani S. A., Ye X. S. Cell cycle regulation in Aspergillus by two protein kinases. Biochem J. 1996 Aug 1;317(Pt 3):633–641. doi: 10.1042/bj3170633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
  19. Satterwhite L. L., Lohka M. J., Wilson K. L., Scherson T. Y., Cisek L. J., Corden J. L., Pollard T. D. Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis. J Cell Biol. 1992 Aug;118(3):595–605. doi: 10.1083/jcb.118.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wolkow T. D., Mirabito P. M., Venkatram S., Hamer J. E. Hypomorphic bimA(APC3) alleles cause errors in chromosome metabolism that activate the DNA damage checkpoint blocking cytokinesis in Aspergillus nidulans. Genetics. 2000 Jan;154(1):167–179. doi: 10.1093/genetics/154.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wu L., Osmani S. A., Mirabito P. M. A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J Cell Biol. 1998 Jun 29;141(7):1575–1587. doi: 10.1083/jcb.141.7.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ye X. S., Fincher R. R., Tang A., McNeal K. K., Gygax S. E., Wexler A. N., Ryan K. B., James S. W., Osmani S. A. Proteolysis and tyrosine phosphorylation of p34cdc2/cyclin B. The role of MCM2 and initiation of DNA replication to allow tyrosine phosphorylation of p34cdc2. J Biol Chem. 1997 Dec 26;272(52):33384–33393. doi: 10.1074/jbc.272.52.33384. [DOI] [PubMed] [Google Scholar]
  23. Ye X. S., Fincher R. R., Tang A., O'Donnell K., Osmani S. A. Two S-phase checkpoint systems, one involving the function of both BIME and Tyr15 phosphorylation of p34cdc2, inhibit NIMA and prevent premature mitosis. EMBO J. 1996 Jul 15;15(14):3599–3610. [PMC free article] [PubMed] [Google Scholar]
  24. Ye X. S., Fincher R. R., Tang A., Osmani A. H., Osmani S. A. Regulation of the anaphase-promoting complex/cyclosome by bimAAPC3 and proteolysis of NIMA. Mol Biol Cell. 1998 Nov;9(11):3019–3030. doi: 10.1091/mbc.9.11.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ye X. S., Fincher R. R., Tang A., Osmani S. A. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans. EMBO J. 1997 Jan 2;16(1):182–192. doi: 10.1093/emboj/16.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zachariae W., Nasmyth K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 1999 Aug 15;13(16):2039–2058. doi: 10.1101/gad.13.16.2039. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES