Abstract
The dosage compensation machinery of Caenorhabditis elegans is targeted specifically to the X chromosomes of hermaphrodites (XX) to reduce gene expression by half. Many of the trans-acting factors that direct the dosage compensation machinery to X have been identified, but none of the proposed cis-acting X chromosome-recognition elements needed to recruit dosage compensation components have been found. To study X chromosome recognition, we explored whether portions of an X chromosome attached to an autosome are competent to bind the C. elegans dosage compensation complex (DCC). To do so, we devised a three-dimensional in situ approach that allowed us to compare the volume, position, and number of chromosomal and subchromosomal bodies bound by the dosage compensation machinery in wild-type XX nuclei and XX nuclei carrying an X duplication. The dosage compensation complex was found to associate with a duplication of the right 30% of X, but the complex did not spread onto adjacent autosomal sequences. This result indicates that all the information required to specify X chromosome identity resides on the duplication and that the dosage compensation machinery can localize to a site distinct from the full-length hermaphrodite X chromosome. In contrast, smaller duplications of other regions of X appeared to not support localization of the DCC. In a separate effort to identify cis-acting X recognition elements, we used a computational approach to analyze genomic DNA sequences for the presence of short motifs that were abundant and overrepresented on X relative to autosomes. Fourteen families of X-enriched motifs were discovered and mapped onto the X chromosome.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amrein H., Axel R. Genes expressed in neurons of adult male Drosophila. Cell. 1997 Feb 21;88(4):459–469. doi: 10.1016/s0092-8674(00)81886-3. [DOI] [PubMed] [Google Scholar]
- Bashaw G. J., Baker B. S. The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development. 1995 Oct;121(10):3245–3258. doi: 10.1242/dev.121.10.3245. [DOI] [PubMed] [Google Scholar]
- Bhadra U., Pal-Bhadra M., Birchler J. A. Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics. 1999 May;152(1):249–268. doi: 10.1093/genetics/152.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhat M. A., Philp A. V., Glover D. M., Bellen H. J. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoisomerase II. Cell. 1996 Dec 13;87(6):1103–1114. doi: 10.1016/s0092-8674(00)81804-8. [DOI] [PubMed] [Google Scholar]
- Bone J. R., Kuroda M. I. Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila. Genetics. 1996 Oct;144(2):705–713. doi: 10.1093/genetics/144.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown C. J., Willard H. F. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature. 1994 Mar 10;368(6467):154–156. doi: 10.1038/368154a0. [DOI] [PubMed] [Google Scholar]
- C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
- Carmi I., Kopczynski J. B., Meyer B. J. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature. 1998 Nov 12;396(6707):168–173. doi: 10.1038/24164. [DOI] [PubMed] [Google Scholar]
- Chuang P. T., Albertson D. G., Meyer B. J. DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell. 1994 Nov 4;79(3):459–474. doi: 10.1016/0092-8674(94)90255-0. [DOI] [PubMed] [Google Scholar]
- Chuang P. T., Lieb J. D., Meyer B. J. Sex-specific assembly of a dosage compensation complex on the nematode X chromosome. Science. 1996 Dec 6;274(5293):1736–1739. doi: 10.1126/science.274.5293.1736. [DOI] [PubMed] [Google Scholar]
- Clemson C. M., McNeil J. A., Willard H. F., Lawrence J. B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol. 1996 Feb;132(3):259–275. doi: 10.1083/jcb.132.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cline T. W., Meyer B. J. Vive la différence: males vs females in flies vs worms. Annu Rev Genet. 1996;30:637–702. doi: 10.1146/annurev.genet.30.1.637. [DOI] [PubMed] [Google Scholar]
- Csankovszki G., Panning B., Bates B., Pehrson J. R., Jaenisch R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet. 1999 Aug;22(4):323–324. doi: 10.1038/11887. [DOI] [PubMed] [Google Scholar]
- Dawes H. E., Berlin D. S., Lapidus D. M., Nusbaum C., Davis T. L., Meyer B. J. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science. 1999 Jun 11;284(5421):1800–1804. doi: 10.1126/science.284.5421.1800. [DOI] [PubMed] [Google Scholar]
- DeLong L., Plenefisch J. D., Klein R. D., Meyer B. J. Feedback control of sex determination by dosage compensation revealed through Caenorhabditis elegans sdc-3 mutations. Genetics. 1993 Apr;133(4):875–896. doi: 10.1093/genetics/133.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean P., Mascio L., Ow D., Sudar D., Mullikin J. Proposed standard for image cytometry data files. Cytometry. 1990;11(5):561–569. doi: 10.1002/cyto.990110502. [DOI] [PubMed] [Google Scholar]
- Gorman M., Franke A., Baker B. S. Molecular characterization of the male-specific lethal-3 gene and investigations of the regulation of dosage compensation in Drosophila. Development. 1995 Feb;121(2):463–475. doi: 10.1242/dev.121.2.463. [DOI] [PubMed] [Google Scholar]
- Gorman M., Kuroda M. I., Baker B. S. Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila. Cell. 1993 Jan 15;72(1):39–49. doi: 10.1016/0092-8674(93)90048-u. [DOI] [PubMed] [Google Scholar]
- Gu W., Szauter P., Lucchesi J. C. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev Genet. 1998;22(1):56–64. doi: 10.1002/(SICI)1520-6408(1998)22:1<56::AID-DVG6>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Herman R. K., Madl J. E., Kari C. K. Duplications in Caenorhabditis elegans. Genetics. 1979 Jun;92(2):419–435. doi: 10.1093/genetics/92.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzing L. B., Romer J. T., Horn J. M., Ashworth A. Xist has properties of the X-chromosome inactivation centre. Nature. 1997 Mar 20;386(6622):272–275. doi: 10.1038/386272a0. [DOI] [PubMed] [Google Scholar]
- Hsu D. R., Chuang P. T., Meyer B. J. DPY-30, a nuclear protein essential early in embryogenesis for Caenorhabditis elegans dosage compensation. Development. 1995 Oct;121(10):3323–3334. doi: 10.1242/dev.121.10.3323. [DOI] [PubMed] [Google Scholar]
- Jeppesen P., Turner B. M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell. 1993 Jul 30;74(2):281–289. doi: 10.1016/0092-8674(93)90419-q. [DOI] [PubMed] [Google Scholar]
- Kelley R. L., Meller V. H., Gordadze P. R., Roman G., Davis R. L., Kuroda M. I. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell. 1999 Aug 20;98(4):513–522. doi: 10.1016/s0092-8674(00)81979-0. [DOI] [PubMed] [Google Scholar]
- Kelley R. L., Solovyeva I., Lyman L. M., Richman R., Solovyev V., Kuroda M. I. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell. 1995 Jun 16;81(6):867–877. doi: 10.1016/0092-8674(95)90007-1. [DOI] [PubMed] [Google Scholar]
- Klein R. D., Meyer B. J. Independent domains of the Sdc-3 protein control sex determination and dosage compensation in C. elegans. Cell. 1993 Feb 12;72(3):349–364. doi: 10.1016/0092-8674(93)90113-5. [DOI] [PubMed] [Google Scholar]
- Koshland D., Strunnikov A. Mitotic chromosome condensation. Annu Rev Cell Dev Biol. 1996;12:305–333. doi: 10.1146/annurev.cellbio.12.1.305. [DOI] [PubMed] [Google Scholar]
- Kuroda M. I., Kernan M. J., Kreber R., Ganetzky B., Baker B. S. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell. 1991 Sep 6;66(5):935–947. doi: 10.1016/0092-8674(91)90439-6. [DOI] [PubMed] [Google Scholar]
- LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
- Lee J. T., Lu N., Han Y. Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3836–3841. doi: 10.1073/pnas.96.7.3836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. T., Lu N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell. 1999 Oct 1;99(1):47–57. doi: 10.1016/s0092-8674(00)80061-6. [DOI] [PubMed] [Google Scholar]
- Lee J. T., Strauss W. M., Dausman J. A., Jaenisch R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell. 1996 Jul 12;86(1):83–94. doi: 10.1016/s0092-8674(00)80079-3. [DOI] [PubMed] [Google Scholar]
- Lieb J. D., Albrecht M. R., Chuang P. T., Meyer B. J. MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation. Cell. 1998 Jan 23;92(2):265–277. doi: 10.1016/s0092-8674(00)80920-4. [DOI] [PubMed] [Google Scholar]
- Lyman L. M., Copps K., Rastelli L., Kelley R. L., Kuroda M. I. Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics. 1997 Dec;147(4):1743–1753. doi: 10.1093/genetics/147.4.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malpica N., de Solórzano C. O., Vaquero J. J., Santos A., Vallcorba I., García-Sagredo J. M., del Pozo F. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry. 1997 Aug 1;28(4):289–297. doi: 10.1002/(sici)1097-0320(19970801)28:4<289::aid-cyto3>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
- Marahrens Y., Loring J., Jaenisch R. Role of the Xist gene in X chromosome choosing. Cell. 1998 Mar 6;92(5):657–664. doi: 10.1016/s0092-8674(00)81133-2. [DOI] [PubMed] [Google Scholar]
- Marahrens Y., Panning B., Dausman J., Strauss W., Jaenisch R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 1997 Jan 15;11(2):156–166. doi: 10.1101/gad.11.2.156. [DOI] [PubMed] [Google Scholar]
- Meller V. H. Dosage compensation: making 1X equal 2X. Trends Cell Biol. 2000 Feb;10(2):54–59. doi: 10.1016/s0962-8924(99)01693-1. [DOI] [PubMed] [Google Scholar]
- Meller V. H., Wu K. H., Roman G., Kuroda M. I., Davis R. L. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell. 1997 Feb 21;88(4):445–457. doi: 10.1016/s0092-8674(00)81885-1. [DOI] [PubMed] [Google Scholar]
- Meneely P. M., Nordstrom K. D. X chromosome duplications affect a region of the chromosome they do not duplicate in Caenorhabditis elegans. Genetics. 1988 Jun;119(2):365–375. doi: 10.1093/genetics/119.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer B. J., Casson L. P. Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell. 1986 Dec 26;47(6):871–881. doi: 10.1016/0092-8674(86)90802-0. [DOI] [PubMed] [Google Scholar]
- Mohandas T., Sparkes R. S., Shapiro L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science. 1981 Jan 23;211(4480):393–396. doi: 10.1126/science.6164095. [DOI] [PubMed] [Google Scholar]
- Ortiz de Solórzano C., García Rodriguez E., Jones A., Pinkel D., Gray J. W., Sudar D., Lockett S. J. Segmentation of confocal microscope images of cell nuclei in thick tissue sections. J Microsc. 1999 Mar;193(Pt 3):212–226. doi: 10.1046/j.1365-2818.1999.00463.x. [DOI] [PubMed] [Google Scholar]
- Ortiz de Solórzano C., García Rodriguez E., Jones A., Pinkel D., Gray J. W., Sudar D., Lockett S. J. Segmentation of confocal microscope images of cell nuclei in thick tissue sections. J Microsc. 1999 Mar;193(Pt 3):212–226. doi: 10.1046/j.1365-2818.1999.00463.x. [DOI] [PubMed] [Google Scholar]
- Ortiz de Solórzano C., Santos A., Vallcorba I., García-Sagredo J. M., del Pozo F. Automated FISH spot counting in interphase nuclei: statistical validation and data correction. Cytometry. 1998 Feb 1;31(2):93–99. doi: 10.1002/(sici)1097-0320(19980201)31:2<93::aid-cyto4>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Ortiz de Solórzano C., Santos A., Vallcorba I., García-Sagredo J. M., del Pozo F. Automated FISH spot counting in interphase nuclei: statistical validation and data correction. Cytometry. 1998 Feb 1;31(2):93–99. doi: 10.1002/(sici)1097-0320(19980201)31:2<93::aid-cyto4>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Palmer M. J., Mergner V. A., Richman R., Manning J. E., Kuroda M. I., Lucchesi J. C. The male-specific lethal-one (msl-1) gene of Drosophila melanogaster encodes a novel protein that associates with the X chromosome in males. Genetics. 1993 Jun;134(2):545–557. doi: 10.1093/genetics/134.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer M. J., Mergner V. A., Richman R., Manning J. E., Kuroda M. I., Lucchesi J. C. The male-specific lethal-one (msl-1) gene of Drosophila melanogaster encodes a novel protein that associates with the X chromosome in males. Genetics. 1993 Jun;134(2):545–557. doi: 10.1093/genetics/134.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer M. J., Richman R., Richter L., Kuroda M. I. Sex-specific regulation of the male-specific lethal-1 dosage compensation gene in Drosophila. Genes Dev. 1994 Mar 15;8(6):698–706. doi: 10.1101/gad.8.6.698. [DOI] [PubMed] [Google Scholar]
- Penny G. D., Kay G. F., Sheardown S. A., Rastan S., Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature. 1996 Jan 11;379(6561):131–137. doi: 10.1038/379131a0. [DOI] [PubMed] [Google Scholar]
- Straight A. F., Belmont A. S., Robinett C. C., Murray A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol. 1996 Dec 1;6(12):1599–1608. doi: 10.1016/s0960-9822(02)70783-5. [DOI] [PubMed] [Google Scholar]
- Zhou S., Yang Y., Scott M. J., Pannuti A., Fehr K. C., Eisen A., Koonin E. V., Fouts D. L., Wrightsman R., Manning J. E. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J. 1995 Jun 15;14(12):2884–2895. doi: 10.1002/j.1460-2075.1995.tb07288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]