Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):1623–1633. doi: 10.1093/genetics/156.4.1623

spe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans.

J Nance 1, E B Davis 1, S Ward 1
PMCID: PMC1461390  PMID: 11102362

Abstract

Caenorhabditis elegans spermatids complete a dramatic morphogenesis to crawling spermatozoa in the absence of an actin- or tubulin-based cytoskeleton and without synthesizing new gene products. Mutations in three genes (spe-8, spe-12, and spe-27) prevent the initiation of this morphogenesis, termed activation. Males with mutations in any of these genes are fertile. By contrast, mutant hermaphrodites are self-sterile when unmated due to a failure in spermatid activation. Intriguingly, mutant hermaphrodites form functional spermatozoa and become self-fertile upon mating, suggesting that spermatids can be activated by male seminal fluid. Here we describe a mutation in a fourth gene, spe-29, which mimics the phenotype of spe-8, spe-12, and spe-27 mutants. spe-29 sperm are defective in the initiation of hermaphrodite sperm activation, yet they maintain the ability to complete the morphogenetic rearrangements that follow. Mutant alleles of spe-12, spe-27, and spe-29 exhibit genetic interactions that suggest that the wild-type products of these genes function in a common signaling pathway to initiate sperm activation. We have identified the spe-29 gene, which is expressed specifically in the sperm-producing germ line and is predicted to encode a small, novel transmembrane protein.

Full Text

The Full Text of this article is available as a PDF (295.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azim A. C., Barkalow K., Chou J., Hartwig J. H. Activation of the small GTPases, rac and cdc42, after ligation of the platelet PAR-1 receptor. Blood. 2000 Feb 1;95(3):959–964. [PubMed] [Google Scholar]
  2. Blelloch R., Kimble J. Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature. 1999 Jun 10;399(6736):586–590. doi: 10.1038/21196. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  5. Chamberlin H. M., Palmer R. E., Newman A. P., Sternberg P. W., Baillie D. L., Thomas J. H. The PAX gene egl-38 mediates developmental patterning in Caenorhabditis elegans. Development. 1997 Oct;124(20):3919–3928. doi: 10.1242/dev.124.20.3919. [DOI] [PubMed] [Google Scholar]
  6. Gu G., Caldwell G. A., Chalfie M. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6577–6582. doi: 10.1073/pnas.93.13.6577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kelly W. G., Fire A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development. 1998 Jul;125(13):2451–2456. doi: 10.1242/dev.125.13.2451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kelly W. G., Xu S., Montgomery M. K., Fire A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics. 1997 May;146(1):227–238. doi: 10.1093/genetics/146.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Korswagen H. C., Durbin R. M., Smits M. T., Plasterk R. H. Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14680–14685. doi: 10.1073/pnas.93.25.14680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kramer J. M., French R. P., Park E. C., Johnson J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol. 1990 May;10(5):2081–2089. doi: 10.1128/mcb.10.5.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kyriakis J. M., Avruch J. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays. 1996 Jul;18(7):567–577. doi: 10.1002/bies.950180708. [DOI] [PubMed] [Google Scholar]
  13. L'Hernault S. W., Shakes D. C., Ward S. Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics. 1988 Oct;120(2):435–452. doi: 10.1093/genetics/120.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LaMunyon C. W., Ward S. Assessing the viability of mutant and manipulated sperm by artificial insemination of Caenorhabditis elegans. Genetics. 1994 Nov;138(3):689–692. doi: 10.1093/genetics/138.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leberer E., Thomas D. Y., Whiteway M. Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev. 1997 Feb;7(1):59–66. doi: 10.1016/s0959-437x(97)80110-4. [DOI] [PubMed] [Google Scholar]
  16. Ma C., Liu H., Zhou Y., Moses K. Identification and characterization of autosomal genes that interact with glass in the developing Drosophila eye. Genetics. 1996 Apr;142(4):1199–1213. doi: 10.1093/genetics/142.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Machaca K., DeFelice L. J., L'Hernault S. W. A novel chloride channel localizes to Caenorhabditis elegans spermatids and chloride channel blockers induce spermatid differentiation. Dev Biol. 1996 May 25;176(1):1–16. doi: 10.1006/dbio.1996.9999. [DOI] [PubMed] [Google Scholar]
  18. Madden K., Snyder M. Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol. 1998;52:687–744. doi: 10.1146/annurev.micro.52.1.687. [DOI] [PubMed] [Google Scholar]
  19. Maloof J. N., Whangbo J., Harris J. M., Jongeward G. D., Kenyon C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development. 1999 Jan;126(1):37–49. doi: 10.1242/dev.126.1.37. [DOI] [PubMed] [Google Scholar]
  20. Minniti A. N., Sadler C., Ward S. Genetic and molecular analysis of spe-27, a gene required for spermiogenesis in Caenorhabditis elegans hermaphrodites. Genetics. 1996 May;143(1):213–223. doi: 10.1093/genetics/143.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nance J., Minniti A. N., Sadler C., Ward S. spe-12 encodes a sperm cell surface protein that promotes spermiogenesis in Caenorhabditis elegans. Genetics. 1999 May;152(1):209–220. doi: 10.1093/genetics/152.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nelson G. A., Lew K. K., Ward S. Intersex, a temperature-sensitive mutant of the nematode Caenorhabditis elegans. Dev Biol. 1978 Oct;66(2):386–409. doi: 10.1016/0012-1606(78)90247-6. [DOI] [PubMed] [Google Scholar]
  23. Page B. D., Zhang W., Steward K., Blumenthal T., Priess J. R. ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos. Genes Dev. 1997 Jul 1;11(13):1651–1661. doi: 10.1101/gad.11.13.1651. [DOI] [PubMed] [Google Scholar]
  24. Pavalko F. M., Roberts T. M. Posttranslational insertion of a membrane protein on Caenorhabditis elegans sperm occurs without de novo protein synthesis. J Cell Biochem. 1989 Oct;41(2):57–70. doi: 10.1002/jcb.240410203. [DOI] [PubMed] [Google Scholar]
  25. Qu C. K., Yu W. M., Azzarelli B., Feng G. S. Genetic evidence that Shp-2 tyrosine phosphatase is a signal enhancer of the epidermal growth factor receptor in mammals. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8528–8533. doi: 10.1073/pnas.96.15.8528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shakes D. C., Ward S. Initiation of spermiogenesis in C. elegans: a pharmacological and genetic analysis. Dev Biol. 1989 Jul;134(1):189–200. doi: 10.1016/0012-1606(89)90088-2. [DOI] [PubMed] [Google Scholar]
  27. Ward S., Argon Y., Nelson G. A. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol. 1981 Oct;91(1):26–44. doi: 10.1083/jcb.91.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ward S., Hogan E., Nelson G. A. The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol. 1983 Jul;98(1):70–79. doi: 10.1016/0012-1606(83)90336-6. [DOI] [PubMed] [Google Scholar]
  29. Ward S., Miwa J. Characterization of temperature-sensitive, fertilization-defective mutants of the nematode caenorhabditis elegans. Genetics. 1978 Feb;88(2):285–303. doi: 10.1093/genetics/88.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williams B. D. Genetic mapping with polymorphic sequence-tagged sites. Methods Cell Biol. 1995;48:81–96. doi: 10.1016/s0091-679x(08)61384-9. [DOI] [PubMed] [Google Scholar]
  31. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES