Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):2063–2079. doi: 10.1093/genetics/156.4.2063

Empirical Bayes procedure for estimating genetic distance between populations and effective population size.

S Kitada 1, T Hayashi 1, H Kishino 1
PMCID: PMC1461395  PMID: 11102396

Abstract

We developed an empirical Bayes procedure to estimate genetic distances between populations using allele frequencies. This procedure makes it possible to describe the skewness of the genetic distance while taking full account of the uncertainty of the sample allele frequencies. Dirichlet priors of the allele frequencies are specified, and the posterior distributions of the various composite parameters are obtained by Monte Carlo simulation. To avoid overdependence on subjective priors, we adopt a hierarchical model and estimate hyperparameters by maximizing the joint marginal-likelihood function. Taking advantage of the empirical Bayesian procedure, we extend the method to estimate the effective population size using temporal changes in allele frequencies. The method is applied to data sets on red sea bream, herring, northern pike, and ayu broodstock. It is shown that overdispersion overestimates the genetic distance and underestimates the effective population size, if it is not taken into account during the analysis. The joint marginal-likelihood function also estimates the rate of gene flow into island populations.

Full Text

The Full Text of this article is available as a PDF (358.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hill W. G. A note on effective population size with overlapping generations. Genetics. 1979 May;92(1):317–322. doi: 10.1093/genetics/92.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jorde P. E., Ryman N. Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics. 1995 Feb;139(2):1077–1090. doi: 10.1093/genetics/139.2.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lange K. Applications of the Dirichlet distribution to forensic match probabilities. Genetica. 1995;96(1-2):107–117. doi: 10.1007/BF01441156. [DOI] [PubMed] [Google Scholar]
  4. Miller L. M., Kapuscinski A. R. Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population. Genetics. 1997 Nov;147(3):1249–1258. doi: 10.1093/genetics/147.3.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nei M., Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981 Jul;98(3):625–640. doi: 10.1093/genetics/98.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pollak E. A new method for estimating the effective population size from allele frequency changes. Genetics. 1983 Jul;104(3):531–548. doi: 10.1093/genetics/104.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rannala B., Hartigan J. A. Estimating gene flow in island populations. Genet Res. 1996 Apr;67(2):147–158. doi: 10.1017/s0016672300033607. [DOI] [PubMed] [Google Scholar]
  8. Roff D. A., Bentzen P. The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. Mol Biol Evol. 1989 Sep;6(5):539–545. doi: 10.1093/oxfordjournals.molbev.a040568. [DOI] [PubMed] [Google Scholar]
  9. SANGHVI L. D. Comparison of genetical and morphological methods for a study of biological differences. Am J Phys Anthropol. 1953 Sep;11(3):385–404. doi: 10.1002/ajpa.1330110313. [DOI] [PubMed] [Google Scholar]
  10. Waples R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989 Feb;121(2):379–391. doi: 10.1093/genetics/121.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Williamson E. G., Slatkin M. Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics. 1999 Jun;152(2):755–761. doi: 10.1093/genetics/152.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wright S. The Differential Equation of the Distribution of Gene Frequencies. Proc Natl Acad Sci U S A. 1945 Dec;31(12):382–389. doi: 10.1073/pnas.31.12.382. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES