Abstract
A mathematical model and a computer simulation were used to study PCR specificity. The model describes the occurrences of non-targeted PCR products formed through random primer-template interactions. The PCR simulation scans DNA sequence databases with primers pairs. According to the model prediction, PCR with complex templates should rarely yield non-targeted products under typical reaction conditions. This is surprising as such products are often amplified in real PCR under conditions optimized for stringency. The causes for this 'PCR paradox' were investigated by comparing the model predictions with simulation results. We found that deviations from randomness in sequences from real genomes could not explain the frequent occurrence of non-targeted products in real PCR. The most likely explanation to the 'PCR paradox' is a relatively high tolerance of PCR to mismatches. The model also predicts that mismatch tolerance has the strongest effect on the number of non-targeted products, followed by primer length, template size and product size limit. The model and the simulation can be utilized for PCR studies, primer design and probing DNA uniqueness and randomness.
Full Text
The Full Text of this article is available as a PDF (143.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angov E., Camerini-Otero R. D. The recA gene from the thermophile Thermus aquaticus YT-1: cloning, expression, and characterization. J Bacteriol. 1994 Mar;176(5):1405–1412. doi: 10.1128/jb.176.5.1405-1412.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birkenmeier E. H., Schneider U., Thurston S. J. Fingerprinting genomes by use of PCR with primers that encode protein motifs or contain sequences that regulate gene expression. Mamm Genome. 1992;3(10):537–545. doi: 10.1007/BF00350618. [DOI] [PubMed] [Google Scholar]
- Carr K. Nobel rewards two laboratory revolutions. Nature. 1993 Oct 21;365(6448):685–685. doi: 10.1038/365685a0. [DOI] [PubMed] [Google Scholar]
- Cooper D. L., Baptist E. W. Degenerate oligonucleotide sequence-directed cross-species PCR cloning of the BCP 54/ALDH 3 cDNA: priming from inverted repeats and formation of tandem primer arrays. PCR Methods Appl. 1991 Aug;1(1):57–62. doi: 10.1101/gr.1.1.57. [DOI] [PubMed] [Google Scholar]
- Dopazo J., Rodríguez A., Sáiz J. C., Sobrino F. Design of primers for PCR amplification of highly variable genomes. Comput Appl Biosci. 1993 Apr;9(2):123–125. doi: 10.1093/bioinformatics/9.2.123. [DOI] [PubMed] [Google Scholar]
- Dujon B., Alexandraki D., André B., Ansorge W., Baladron V., Ballesta J. P., Banrevi A., Bolle P. A., Bolotin-Fukuhara M., Bossier P. Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371–378. doi: 10.1038/369371a0. [DOI] [PubMed] [Google Scholar]
- Eberhardt N. L. A shell program for the design of PCR primers using genetics computer group (GCG) software (7.1) on VAX/VMS systems. Biotechniques. 1992 Dec;13(6):914–917. [PubMed] [Google Scholar]
- Engels W. R. Contributing software to the internet: the Amplify program. Trends Biochem Sci. 1993 Nov;18(11):448–450. doi: 10.1016/0968-0004(93)90148-g. [DOI] [PubMed] [Google Scholar]
- Feldmann H., Aigle M., Aljinovic G., André B., Baclet M. C., Barthe C., Baur A., Bécam A. M., Biteau N., Boles E. Complete DNA sequence of yeast chromosome II. EMBO J. 1994 Dec 15;13(24):5795–5809. doi: 10.1002/j.1460-2075.1994.tb06923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffais R., André P. M., Thibon M. K-tuple frequency in the human genome and polymerase chain reaction. Nucleic Acids Res. 1991 Jul 25;19(14):3887–3891. doi: 10.1093/nar/19.14.3887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grob U., Gartmann C. J. COOL--a VAX program for finding COmmon OLigomers in nucleic acid sequences. Thyroid hormone receptor sequences used as an example. Comput Appl Biosci. 1991 Jul;7(3):379–381. doi: 10.1093/bioinformatics/7.3.379. [DOI] [PubMed] [Google Scholar]
- He Q., Marjamäki M., Soini H., Mertsola J., Viljanen M. K. Primers are decisive for sensitivity of PCR. Biotechniques. 1994 Jul;17(1):82, 84, 86-7. [PubMed] [Google Scholar]
- Hillier L., Green P. OSP: a computer program for choosing PCR and DNA sequencing primers. PCR Methods Appl. 1991 Nov;1(2):124–128. doi: 10.1101/gr.1.2.124. [DOI] [PubMed] [Google Scholar]
- Johnston M., Andrews S., Brinkman R., Cooper J., Ding H., Dover J., Du Z., Favello A., Fulton L., Gattung S. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077–2082. doi: 10.1126/science.8091229. [DOI] [PubMed] [Google Scholar]
- Karlin S., Cardon L. R. Computational DNA sequence analysis. Annu Rev Microbiol. 1994;48:619–654. doi: 10.1146/annurev.mi.48.100194.003155. [DOI] [PubMed] [Google Scholar]
- Kwok S., Kellogg D. E., McKinney N., Spasic D., Goda L., Levenson C., Sninsky J. J. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990 Feb 25;18(4):999–1005. doi: 10.1093/nar/18.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowe T., Sharefkin J., Yang S. Q., Dieffenbach C. W. A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids Res. 1990 Apr 11;18(7):1757–1761. doi: 10.1093/nar/18.7.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas K., Busch M., Mössinger S., Thompson J. A. An improved microcomputer program for finding gene- or gene family-specific oligonucleotides suitable as primers for polymerase chain reactions or as probes. Comput Appl Biosci. 1991 Oct;7(4):525–529. doi: 10.1093/bioinformatics/7.4.525. [DOI] [PubMed] [Google Scholar]
- Mitsuhashi M., Cooper A., Ogura M., Shinagawa T., Yano K., Hosokawa T. Oligonucleotide probe design--a new approach. Nature. 1994 Feb 24;367(6465):759–761. doi: 10.1038/367759a0. [DOI] [PubMed] [Google Scholar]
- Montpetit M. L., Cassol S., Salas T., O'Shaughnessy M. V. OLIGSCAN: a computer program to assist in the design of PCR primers homologous to multiple DNA sequences. J Virol Methods. 1992 Feb;36(2):119–128. doi: 10.1016/0166-0934(92)90143-2. [DOI] [PubMed] [Google Scholar]
- Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–273. doi: 10.1101/sqb.1986.051.01.032. [DOI] [PubMed] [Google Scholar]
- Oliver S. G., van der Aart Q. J., Agostoni-Carbone M. L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J. P., Benit P. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
- Rychlik W. Priming efficiency in PCR. Biotechniques. 1995 Jan;18(1):84-6, 88-90. [PubMed] [Google Scholar]
- Rychlik W., Rhoads R. E. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 1989 Nov 11;17(21):8543–8551. doi: 10.1093/nar/17.21.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rychlik W., Spencer W. J., Rhoads R. E. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 1990 Nov 11;18(21):6409–6412. doi: 10.1093/nar/18.21.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- Sakuma Y., Nishigaki K. Computer prediction of general PCR products based on dynamical solution structures of DNA. J Biochem. 1994 Oct;116(4):736–741. doi: 10.1093/oxfordjournals.jbchem.a124589. [DOI] [PubMed] [Google Scholar]
- Sommer R., Tautz D. Minimal homology requirements for PCR primers. Nucleic Acids Res. 1989 Aug 25;17(16):6749–6749. doi: 10.1093/nar/17.16.6749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 1992 Oct 11;20(19):4965–4970. doi: 10.1093/nar/20.19.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
- Wu D. Y., Ugozzoli L., Pal B. K., Qian J., Wallace R. B. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 1991 Apr;10(3):233–238. doi: 10.1089/dna.1991.10.233. [DOI] [PubMed] [Google Scholar]