Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):149–161. doi: 10.1093/genetics/157.1.149

Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune.

T Y James 1, J M Moncalvo 1, S Li 1, R Vilgalys 1
PMCID: PMC1461461  PMID: 11139499

Abstract

The common split-gilled mushroom Schizophyllum commune is found throughout the world on woody substrates. This study addresses the dispersal and population structure of this fungal species by studying the phylogeny and evolutionary dynamics of ribosomal DNA (rDNA) spacer regions. Extensive sampling (n = 195) of sequences of the intergenic spacer region (IGS1) revealed a large number of unique haplotypes (n = 143). The phylogeny of these IGS1 sequences revealed strong geographic patterns and supported three evolutionarily distinct lineages within the global population. The same three geographic lineages were found in phylogenetic analysis of both other rDNA spacer regions (IGS2 and ITS). However, nested clade analysis of the IGS1 phylogeny suggested the population structure of S. commune has undergone recent changes, such as a long distance colonization of western North America from Europe as well as a recent range expansion in the Caribbean. Among all spacer regions, variation in length and nucleotide sequence was observed between but not within the tandem rDNA repeats (arrays). This pattern is consistent with strong within-array and weak among-array homogenizing forces. We present evidence for the suppression of recombination between rDNA arrays on homologous chromosomes that may account for this pattern of concerted evolution.

Full Text

The Full Text of this article is available as a PDF (312.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dons J. J., Wessels J. G. Sequence organization of the nuclear DNA of Schizophyllum commune. Biochim Biophys Acta. 1980 May 30;607(3):385–396. doi: 10.1016/0005-2787(80)90149-5. [DOI] [PubMed] [Google Scholar]
  2. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  3. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Felsenstein J. How can we infer geography and history from gene frequencies? J Theor Biol. 1982 May 7;96(1):9–20. doi: 10.1016/0022-5193(82)90152-7. [DOI] [PubMed] [Google Scholar]
  5. Hiscock S. J., Kües U. Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. Int Rev Cytol. 1999;193:165–295. doi: 10.1016/s0074-7696(08)61781-7. [DOI] [PubMed] [Google Scholar]
  6. Martin F., Selosse M. A., Le Tacon F. The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor: structural analysis and allelic polymorphism. Microbiology. 1999 Jul;145(Pt 7):1605–1611. doi: 10.1099/13500872-145-7-1605. [DOI] [PubMed] [Google Scholar]
  7. May G., Shaw F., Badrane H., Vekemans X. The signature of balancing selection: fungal mating compatibility gene evolution. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9172–9177. doi: 10.1073/pnas.96.16.9172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moncalvo J. M., Lutzoni F. M., Rehner S. A., Johnson J., Vilgalys R. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol. 2000 Jun;49(2):278–305. doi: 10.1093/sysbio/49.2.278. [DOI] [PubMed] [Google Scholar]
  9. Petes T. D., Pukkila P. J. Meiotic sister chromatid recombination. Adv Genet. 1995;33:41–62. doi: 10.1016/s0065-2660(08)60330-2. [DOI] [PubMed] [Google Scholar]
  10. Posada D., Crandall K. A., Templeton A. R. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol. 2000 Apr;9(4):487–488. doi: 10.1046/j.1365-294x.2000.00887.x. [DOI] [PubMed] [Google Scholar]
  11. Rihs J. D., Padhye A. A., Good C. B. Brain abscess caused by Schizophyllum commune: an emerging basidiomycete pathogen. J Clin Microbiol. 1996 Jul;34(7):1628–1632. doi: 10.1128/jcm.34.7.1628-1632.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  13. Selker E. U., Morzycka-Wroblewska E., Stevens J. N., Metzenberg R. L. An upstream signal is required for in vitro transcription of Neurospora 5S RNA genes. Mol Gen Genet. 1986 Oct;205(1):189–192. doi: 10.1007/BF02428052. [DOI] [PubMed] [Google Scholar]
  14. Selosse M. A., Costa G., Battista C. D., Tacon F. L., Martin F. Meiotic segregation and recombination of the intergenic spacer of the ribosomal DNA in the ectomycorrhizal basidiomycete Laccaria bicolor. Curr Genet. 1996 Sep;30(4):332–337. doi: 10.1007/s002940050141. [DOI] [PubMed] [Google Scholar]
  15. Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Templeton A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol. 1998 Apr;7(4):381–397. doi: 10.1046/j.1365-294x.1998.00308.x. [DOI] [PubMed] [Google Scholar]
  17. Templeton A. R., Routman E., Phillips C. A. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics. 1995 Jun;140(2):767–782. doi: 10.1093/genetics/140.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Venkateswarlu K., Lee S. W., Nazar R. N. Conserved upstream sequence elements in plant 5S ribosomal RNA-encoding genes. Gene. 1991 Sep 15;105(2):249–254. doi: 10.1016/0378-1119(91)90158-8. [DOI] [PubMed] [Google Scholar]
  19. Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990 Aug;172(8):4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wright S. The Distribution of Self-Sterility Alleles in Populations. Genetics. 1939 Jun;24(4):538–552. doi: 10.1093/genetics/24.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zolan M. E., Pukkila P. J. Inheritance of DNA methylation in Coprinus cinereus. Mol Cell Biol. 1986 Jan;6(1):195–200. doi: 10.1128/mcb.6.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES