Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):307–315. doi: 10.1093/genetics/157.1.307

Drosophila Lyra mutations are gain-of-function mutations of senseless.

R Nolo 1, L A Abbott 1, H J Bellen 1
PMCID: PMC1461469  PMID: 11139511

Abstract

The Lyra mutation was first described by Jerry Coyne in 1935. Lyra causes recessive pupal lethality and adult heterozygous Lyra mutants exhibit a dominant loss of the anterior and posterior wing margins. Unlike many mutations that cause loss of wing tissue (e.g., scalloped, Beadex, cut, and apterous-Xasta), Lyra wing discs do not exhibit increased necrotic or apoptotic cell death, nor do they show altered BrdU incorporation. However, during wing disc eversion, loss of the anterior and posterior wing margins is apparent. We have previously shown that senseless, a gene that is necessary and sufficient for peripheral nervous system (PNS) development, is allelic to Lyra. Here we show by several genetic criteria that Lyra alleles are neomorphic alleles of senseless that cause ectopic expression of SENSELESS in the wing pouch. Similarly, overexpression of SENSELESS in the wing disc causes loss of wing margin tissue, thereby mimicking the Lyra phenotype. Lyra mutants display aberrant expression of DELTA, VESTIGIAL, WINGLESS, and CUT. As in Lyra mutants, overexpression of SENSELESS in some areas of the wing pouch also leads to loss of WINGLESS and CUT. In summary, our data indicate that overexpression of SENSELESS causes a severe reduction in NOTCH signaling that in turn may lead to decreased transcription of several key genes required for wing development, leading to a failure in cell proliferation and loss of wing margin tissue.

Full Text

The Full Text of this article is available as a PDF (431.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999 Apr 30;284(5415):770–776. doi: 10.1126/science.284.5415.770. [DOI] [PubMed] [Google Scholar]
  2. Baker N. E. Embryonic and imaginal requirements for wingless, a segment-polarity gene in Drosophila. Dev Biol. 1988 Jan;125(1):96–108. doi: 10.1016/0012-1606(88)90062-0. [DOI] [PubMed] [Google Scholar]
  3. Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
  4. Blair S. S. A role for the segment polarity gene shaggy-zeste white 3 in the specification of regional identity in the developing wing of Drosophila. Dev Biol. 1994 Mar;162(1):229–244. doi: 10.1006/dbio.1994.1081. [DOI] [PubMed] [Google Scholar]
  5. Blochlinger K., Jan L. Y., Jan Y. N. Postembryonic patterns of expression of cut, a locus regulating sensory organ identity in Drosophila. Development. 1993 Feb;117(2):441–450. doi: 10.1242/dev.117.2.441. [DOI] [PubMed] [Google Scholar]
  6. Bodmer R., Barbel S., Sheperd S., Jack J. W., Jan L. Y., Jan Y. N. Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell. 1987 Oct 23;51(2):293–307. doi: 10.1016/0092-8674(87)90156-5. [DOI] [PubMed] [Google Scholar]
  7. Brook W. J., Diaz-Benjumea F. J., Cohen S. M. Organizing spatial pattern in limb development. Annu Rev Cell Dev Biol. 1996;12:161–180. doi: 10.1146/annurev.cellbio.12.1.161. [DOI] [PubMed] [Google Scholar]
  8. Cohen B., McGuffin M. E., Pfeifle C., Segal D., Cohen S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 1992 May;6(5):715–729. doi: 10.1101/gad.6.5.715. [DOI] [PubMed] [Google Scholar]
  9. Couso J. P., Bishop S. A., Martinez Arias A. The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development. 1994 Mar;120(3):621–636. doi: 10.1242/dev.120.3.621. [DOI] [PubMed] [Google Scholar]
  10. Couso J. P., Knust E., Martinez Arias A. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr Biol. 1995 Dec 1;5(12):1437–1448. doi: 10.1016/s0960-9822(95)00281-8. [DOI] [PubMed] [Google Scholar]
  11. Diaz-Benjumea F. J., Cohen S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development. 1995 Dec;121(12):4215–4225. doi: 10.1242/dev.121.12.4215. [DOI] [PubMed] [Google Scholar]
  12. Doherty D., Feger G., Younger-Shepherd S., Jan L. Y., Jan Y. N. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev. 1996 Feb 15;10(4):421–434. doi: 10.1101/gad.10.4.421. [DOI] [PubMed] [Google Scholar]
  13. Fristrom D. Cellular degeneration in the production of some mutant phenotypes in Drosophila melanogaster. Mol Gen Genet. 1969;103(4):363–379. doi: 10.1007/BF00383486. [DOI] [PubMed] [Google Scholar]
  14. Fristrom D. Cellular degeneration in wing development of the mutant vestigial of Drosophila melanogaster. J Cell Biol. 1968 Nov;39(2):488–491. doi: 10.1083/jcb.39.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Go M. J., Eastman D. S., Artavanis-Tsakonas S. Cell proliferation control by Notch signaling in Drosophila development. Development. 1998 Jun;125(11):2031–2040. doi: 10.1242/dev.125.11.2031. [DOI] [PubMed] [Google Scholar]
  16. Gustafson K., Boulianne G. L. Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome. 1996 Feb;39(1):174–182. doi: 10.1139/g96-023. [DOI] [PubMed] [Google Scholar]
  17. Jack J., DeLotto Y. Effect of wing scalloping mutations on cut expression and sense organ differentiation in the Drosophila wing margin. Genetics. 1992 Jun;131(2):353–363. doi: 10.1093/genetics/131.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnston L. A., Edgar B. A. Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature. 1998 Jul 2;394(6688):82–84. doi: 10.1038/27925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim J., Irvine K. D., Carroll S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell. 1995 Sep 8;82(5):795–802. doi: 10.1016/0092-8674(95)90476-x. [DOI] [PubMed] [Google Scholar]
  20. Kim J., Sebring A., Esch J. J., Kraus M. E., Vorwerk K., Magee J., Carroll S. B. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature. 1996 Jul 11;382(6587):133–138. doi: 10.1038/382133a0. [DOI] [PubMed] [Google Scholar]
  21. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neumann C. J., Cohen S. M. A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development. 1996 Nov;122(11):3477–3485. doi: 10.1242/dev.122.11.3477. [DOI] [PubMed] [Google Scholar]
  23. Neumann C. J., Cohen S. M. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development. 1997 Feb;124(4):871–880. doi: 10.1242/dev.124.4.871. [DOI] [PubMed] [Google Scholar]
  24. Nolo R., Abbott L. A., Bellen H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell. 2000 Aug 4;102(3):349–362. doi: 10.1016/s0092-8674(00)00040-4. [DOI] [PubMed] [Google Scholar]
  25. Rulifson E. J., Blair S. S. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development. 1995 Sep;121(9):2813–2824. doi: 10.1242/dev.121.9.2813. [DOI] [PubMed] [Google Scholar]
  26. Salzberg A., D'Evelyn D., Schulze K. L., Lee J. K., Strumpf D., Tsai L., Bellen H. J. Mutations affecting the pattern of the PNS in Drosophila reveal novel aspects of neuronal development. Neuron. 1994 Aug;13(2):269–287. doi: 10.1016/0896-6273(94)90346-8. [DOI] [PubMed] [Google Scholar]
  27. Salzberg A., Prokopenko S. N., He Y., Tsai P., Pál M., Maróy P., Glover D. M., Deák P., Bellen H. J. P-element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: mutations affecting embryonic PNS development. Genetics. 1997 Dec;147(4):1723–1741. doi: 10.1093/genetics/147.4.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Skeath J. B., Carroll S. B. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 1991 Jun;5(6):984–995. doi: 10.1101/gad.5.6.984. [DOI] [PubMed] [Google Scholar]
  29. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sturtevant M. A., Bier E. Analysis of the genetic hierarchy guiding wing vein development in Drosophila. Development. 1995 Mar;121(3):785–801. doi: 10.1242/dev.121.3.785. [DOI] [PubMed] [Google Scholar]
  31. Williams J. A., Paddock S. W., Carroll S. B. Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development. 1993 Feb;117(2):571–584. doi: 10.1242/dev.117.2.571. [DOI] [PubMed] [Google Scholar]
  32. Williams J. A., Paddock S. W., Vorwerk K., Carroll S. B. Organization of wing formation and induction of a wing-patterning gene at the dorsal/ventral compartment boundary. Nature. 1994 Mar 24;368(6469):299–305. doi: 10.1038/368299a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES