Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):7–15. doi: 10.1093/genetics/157.1.7

Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates.

D T Haydon 1, A D Bastos 1, N J Knowles 1, A R Samuel 1
PMCID: PMC1461471  PMID: 11139487

Abstract

The nature of selection on capsid genes of foot-and-mouth disease virus (FMDV) was characterized by examining the ratio of nonsynonymous to synonymous substitutions in 11 data sets of sequences obtained from six different serotypes of FMDV. Using a method of analysis that assigns each codon position to one of a number of estimated values of nonsynonymous to synonymous ratio, significant evidence of positive selection was identified in 5 data sets, operating at 1-7% of codon positions. Evidence of positive selection was identified in complete capsid sequences of serotypes A and C and in VP1 sequences of serotypes SAT 1 and 2. Sequences of serotype SAT-2 recovered from a persistently infected African buffalo also revealed evidence for positive selection. Locations of codons under positive selection coincide closely with those of antigenic sites previously identified with the use of monoclonal antibody escape mutants. The vast majority of codons are under mild to strong purifying selection. However, these results suggest that arising antigenic variants benefit from a selective advantage in their interaction with the immune system, either during the course of an infection or in transmission to individuals with previous exposure to antigen. Analysis of amino acid usage at sites under positive selection indicates that this selective advantage can be conferred by amino acid substitutions that share physicochemically similar properties.

Full Text

The Full Text of this article is available as a PDF (279.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastos A. D., Boshoff C. I., Keet D. F., Bengis R. G., Thomson G. R. Natural transmission of foot-and-mouth disease virus between African buffalo (Syncerus caffer) and impala (Aepyceros melampus) in the Kruger National Park, South Africa. Epidemiol Infect. 2000 Jun;124(3):591–598. doi: 10.1017/s0950268899004008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bush R. M., Fitch W. M., Bender C. A., Cox N. J. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol. 1999 Nov;16(11):1457–1465. doi: 10.1093/oxfordjournals.molbev.a026057. [DOI] [PubMed] [Google Scholar]
  3. Butchaiah G., Morgan D. O. Neutralization antigenic sites on type Asia-1 foot-and-mouth disease virus defined by monoclonal antibody-resistant variants. Virus Res. 1997 Dec;52(2):183–194. doi: 10.1016/s0168-1702(97)00117-2. [DOI] [PubMed] [Google Scholar]
  4. Crowther J. R., Farias S., Carpenter W. C., Samuel A. R. Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J Gen Virol. 1993 Aug;74(Pt 8):1547–1553. doi: 10.1099/0022-1317-74-8-1547. [DOI] [PubMed] [Google Scholar]
  5. Crowther J. R., Rowe C. A., Butcher R. Characterization of monoclonal antibodies against a type SAT 2 foot-and-mouth disease virus. Epidemiol Infect. 1993 Oct;111(2):391–406. doi: 10.1017/s0950268800057083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curry S., Fry E., Blakemore W., Abu-Ghazaleh R., Jackson T., King A., Lea S., Newman J., Rowlands D., Stuart D. Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. Structure. 1996 Feb 15;4(2):135–145. doi: 10.1016/s0969-2126(96)00017-2. [DOI] [PubMed] [Google Scholar]
  7. Davidson F. L., Crowther J. R., Nqindi J., Knowles N. J., Thevasagayam S. J., Van Vuuren C. J. Antigenic analysis of SAT 2 serotype foot-and-mouth disease virus isolates from Zimbabwe using monoclonal antibodies. Epidemiol Infect. 1995 Aug;115(1):193–205. doi: 10.1017/s095026880005826x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diez J., Mateu M. G., Domingo E. Selection of antigenic variants of foot-and-mouth disease virus in the absence of antibodies, as revealed by an in situ assay. J Gen Virol. 1989 Dec;70(Pt 12):3281–3289. doi: 10.1099/0022-1317-70-12-3281. [DOI] [PubMed] [Google Scholar]
  9. Feigelstock D. A., Mateu M. G., Valero M. L., Andreu D., Domingo E., Palma E. L. Emerging foot-and-mouth disease virus variants with antigenically critical amino acid substitutions predicted by model studies using reference viruses. Vaccine. 1996 Feb;14(2):97–102. doi: 10.1016/0264-410x(95)00180-9. [DOI] [PubMed] [Google Scholar]
  10. Feigelstock D., Mateu M. G., Piccone M. E., De Simone F., Brocchi E., Domingo E., Palma E. L. Extensive antigenic diversification of foot-and-mouth disease virus by amino acid substitutions outside the major antigenic site. J Gen Virol. 1992 Dec;73(Pt 12):3307–3311. doi: 10.1099/0022-1317-73-12-3307. [DOI] [PubMed] [Google Scholar]
  11. Goldman N., Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–736. doi: 10.1093/oxfordjournals.molbev.a040153. [DOI] [PubMed] [Google Scholar]
  12. Haydon D., Lea S., Fry L., Knowles N., Samuel A. R., Stuart D., Woolhouse M. E. Characterizing sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure. J Mol Evol. 1998 Apr;46(4):465–475. doi: 10.1007/pl00006327. [DOI] [PubMed] [Google Scholar]
  13. Hughes A. L., Ota T., Nei M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol. 1990 Nov;7(6):515–524. doi: 10.1093/oxfordjournals.molbev.a040626. [DOI] [PubMed] [Google Scholar]
  14. Hughes A. L. Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol Biol Evol. 1992 May;9(3):381–393. doi: 10.1093/oxfordjournals.molbev.a040730. [DOI] [PubMed] [Google Scholar]
  15. Kitson J. D., McCahon D., Belsham G. J. Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology. 1990 Nov;179(1):26–34. doi: 10.1016/0042-6822(90)90269-w. [DOI] [PubMed] [Google Scholar]
  16. Lea S., Hernández J., Blakemore W., Brocchi E., Curry S., Domingo E., Fry E., Abu-Ghazaleh R., King A., Newman J. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure. 1994 Feb 15;2(2):123–139. doi: 10.1016/s0969-2126(00)00014-9. [DOI] [PubMed] [Google Scholar]
  17. Marquardt O., Rahman M. M., Freiberg B. Genetic and antigenic variance of foot-and-mouth disease virus type Asia1. Arch Virol. 2000;145(1):149–157. doi: 10.1007/s007050050011. [DOI] [PubMed] [Google Scholar]
  18. Martínez M. A., Dopazo J., Hernández J., Mateu M. G., Sobrino F., Domingo E., Knowles N. J. Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades. J Virol. 1992 Jun;66(6):3557–3565. doi: 10.1128/jvi.66.6.3557-3565.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martínez M. A., Hernández J., Piccone M. E., Palma E. L., Domingo E., Knowles N., Mateu M. G. Two mechanisms of antigenic diversification of foot-and-mouth disease virus. Virology. 1991 Oct;184(2):695–706. doi: 10.1016/0042-6822(91)90439-i. [DOI] [PubMed] [Google Scholar]
  20. Mateu M. G., Camarero J. A., Giralt E., Andreu D., Domingo E. Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. Virology. 1995 Jan 10;206(1):298–306. doi: 10.1016/s0042-6822(95)80045-x. [DOI] [PubMed] [Google Scholar]
  21. Mateu M. G., Da Silva J. L., Rocha E., De Brum D. L., Alonso A., Enjuanes L., Domingo E., Barahona H. Extensive antigenic heterogeneity of foot-and-mouth disease virus of serotype C. Virology. 1988 Nov;167(1):113–124. doi: 10.1016/0042-6822(88)90060-8. [DOI] [PubMed] [Google Scholar]
  22. Mateu M. G., Martínez M. A., Capucci L., Andreu D., Giralt E., Sobrino F., Brocchi E., Domingo E. A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. J Gen Virol. 1990 Mar;71(Pt 3):629–637. doi: 10.1099/0022-1317-71-3-629. [DOI] [PubMed] [Google Scholar]
  23. McCullough K. C., De Simone F., Brocchi E., Capucci L., Crowther J. R., Kihm U. Protective immune response against foot-and-mouth disease. J Virol. 1992 Apr;66(4):1835–1840. doi: 10.1128/jvi.66.4.1835-1840.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parry N. R., Barnett P. V., Ouldridge E. J., Rowlands D. J., Brown F. Neutralizing epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents. J Gen Virol. 1989 Jun;70(Pt 6):1493–1503. doi: 10.1099/0022-1317-70-6-1493. [DOI] [PubMed] [Google Scholar]
  25. Pfaff E., Thiel H. J., Beck E., Strohmaier K., Schaller H. Analysis of neutralizing epitopes on foot-and-mouth disease virus. J Virol. 1988 Jun;62(6):2033–2040. doi: 10.1128/jvi.62.6.2033-2040.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Salt J. S., Samuel A. R., Kitching R. P. Antigenic analysis of type O foot-and-mouth disease virus in the persistently infected bovine. Arch Virol. 1996;141(8):1407–1421. doi: 10.1007/BF01718244. [DOI] [PubMed] [Google Scholar]
  27. Salt J. S. The carrier state in foot and mouth disease--an immunological review. Br Vet J. 1993 May-Jun;149(3):207–223. doi: 10.1016/S0007-1935(05)80168-X. [DOI] [PubMed] [Google Scholar]
  28. Seibert S. A., Howell C. Y., Hughes M. K., Hughes A. L. Natural selection on the gag, pol, and env genes of human immunodeficiency virus 1 (HIV-1). Mol Biol Evol. 1995 Sep;12(5):803–813. doi: 10.1093/oxfordjournals.molbev.a040257. [DOI] [PubMed] [Google Scholar]
  29. Sharp P. M. In search of molecular darwinism. Nature. 1997 Jan 9;385(6612):111–112. doi: 10.1038/385111a0. [DOI] [PubMed] [Google Scholar]
  30. Stave J. W., Card J. L., Morgan D. O., Vakharia V. N. Neutralization sites of type O1 foot-and-mouth disease virus defined by monoclonal antibodies and neutralization-escape virus variants. Virology. 1988 Jan;162(1):21–29. doi: 10.1016/0042-6822(88)90390-x. [DOI] [PubMed] [Google Scholar]
  31. Suzuki Y., Gojobori T. A method for detecting positive selection at single amino acid sites. Mol Biol Evol. 1999 Oct;16(10):1315–1328. doi: 10.1093/oxfordjournals.molbev.a026042. [DOI] [PubMed] [Google Scholar]
  32. Thomas A. A., Woortmeijer R. J., Puijk W., Barteling S. J. Antigenic sites on foot-and-mouth disease virus type A10. J Virol. 1988 Aug;62(8):2782–2789. doi: 10.1128/jvi.62.8.2782-2789.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vosloo W., Bastos A. D., Kirkbride E., Esterhuysen J. J., van Rensburg D. J., Bengis R. G., Keet D. W., Thomson G. R. Persistent infection of African buffalo (Syncerus caffer) with SAT-type foot-and-mouth disease viruses: rate of fixation of mutations, antigenic change and interspecies transmission. J Gen Virol. 1996 Jul;77(Pt 7):1457–1467. doi: 10.1099/0022-1317-77-7-1457. [DOI] [PubMed] [Google Scholar]
  34. Woolhouse M. E., Haydon D. T., Pearson A., Kitching R. P. Failure of vaccination to prevent outbreaks of foot-and-mouth disease. Epidemiol Infect. 1996 Jun;116(3):363–371. doi: 10.1017/s0950268800052699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xie Q. C., McCahon D., Crowther J. R., Belsham G. J., McCullough K. C. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol. 1987 Jun;68(Pt 6):1637–1647. doi: 10.1099/0022-1317-68-6-1637. [DOI] [PubMed] [Google Scholar]
  36. Yang Z., Nielsen R., Goldman N., Pedersen A. M. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000 May;155(1):431–449. doi: 10.1093/genetics/155.1.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zamyatnin A. A. Protein volume in solution. Prog Biophys Mol Biol. 1972;24:107–123. doi: 10.1016/0079-6107(72)90005-3. [DOI] [PubMed] [Google Scholar]
  38. Zanotto P. M., Kallas E. G., de Souza R. F., Holmes E. C. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics. 1999 Nov;153(3):1077–1089. doi: 10.1093/genetics/153.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES