Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):163–181. doi: 10.1093/genetics/157.1.163

Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii.

A M Preble 1, T H Giddings Jr 1, S K Dutcher 1
PMCID: PMC1461482  PMID: 11139500

Abstract

bld2-1 mutant Chlamydomonas reinhardtii strains assemble basal bodies with singlet microtubules; bld2-1 cells display flagellar assembly defects as well as positioning defects of the mitotic spindle and cleavage furrow. To further understand the role of the BLD2 gene, we have isolated three new bld2 alleles and three partially dominant extragenic suppressors, rgn1-1, rgn1-2, and rgn1-3. bld2 rgn1-1 strains have phenotypes intermediate between those of bld2 and wild-type strains with respect to flagellar number, microtubule rootlet organization, cleavage furrow positioning, and basal body structural phenotypes. Instead of the triplet microtubules of wild-type cells, bld2 rgn1-1 basal bodies have mixtures of no, singlet, doublet, and triplet microtubules. The bld2-4 allele was made by insertional mutagenesis and identified in a noncomplementation screen in a diploid strain. The bld2-4 allele has a lethal phenotype based on mitotic segregation in diploid strains and in haploid strains generated by meiotic recombination. The lethal phenotype in haploid strains is suppressed by rgn1-1; these suppressed strains have similar phenotypes to other bld2 rgn1-1 double mutants. It is likely that BLD2 is an essential gene that is needed for basal body assembly and function.

Full Text

The Full Text of this article is available as a PDF (828.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams G. M., Wright R. L., Jarvik J. W. Defective temporal and spatial control of flagellar assembly in a mutant of Chlamydomonas reinhardtii with variable flagellar number. J Cell Biol. 1985 Mar;100(3):955–964. doi: 10.1083/jcb.100.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bobinnec Y., Khodjakov A., Mir L. M., Rieder C. L., Eddé B., Bornens M. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol. 1998 Dec 14;143(6):1575–1589. doi: 10.1083/jcb.143.6.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bobinnec Y., Moudjou M., Fouquet J. P., Desbruyères E., Eddé B., Bornens M. Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil Cytoskeleton. 1998;39(3):223–232. doi: 10.1002/(SICI)1097-0169(1998)39:3<223::AID-CM5>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  4. Cavalier-Smith T. Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci. 1974 Dec;16(3):529–556. doi: 10.1242/jcs.16.3.529. [DOI] [PubMed] [Google Scholar]
  5. Coss R. A. Mitosis in Chlamydomonas reinhardtii basal bodies and the mitotic apparatus. J Cell Biol. 1974 Oct;63(1):325–329. doi: 10.1083/jcb.63.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dutcher S. K. Mating and tetrad analysis in Chlamydomonas reinhardtii. Methods Cell Biol. 1995;47:531–540. doi: 10.1016/s0091-679x(08)60857-2. [DOI] [PubMed] [Google Scholar]
  8. Dutcher S. K. Nuclear fusion-defective phenocopies in Chlamydomonas reinhardtii: mating-type functions for meiosis can act through the cytoplasm. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3946–3950. doi: 10.1073/pnas.85.11.3946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dutcher S. K. Purification of basal bodies and basal body complexes from Chlamydomonas reinhardtii. Methods Cell Biol. 1995;47:323–334. doi: 10.1016/s0091-679x(08)60826-2. [DOI] [PubMed] [Google Scholar]
  10. Dutcher S. K., Trabuco E. C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol Biol Cell. 1998 Jun;9(6):1293–1308. doi: 10.1091/mbc.9.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ehler L. L., Holmes J. A., Dutcher S. K. Loss of spatial control of the mitotic spindle apparatus in a Chlamydomonas reinhardtii mutant strain lacking basal bodies. Genetics. 1995 Nov;141(3):945–960. doi: 10.1093/genetics/141.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferris P. J. Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics. 1995 Oct;141(2):543–549. doi: 10.1093/genetics/141.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodenough U. W., StClair H. S. BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J Cell Biol. 1975 Sep;66(3):480–491. doi: 10.1083/jcb.66.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodenough U. W., Weiss R. L. Interrelationships between microtubules, a striated fiber, and the gametic mating structure of Chlamydomonas reinhardi. J Cell Biol. 1978 Feb;76(2):430–438. doi: 10.1083/jcb.76.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hays T. S., Deuring R., Robertson B., Prout M., Fuller M. T. Interacting proteins identified by genetic interactions: a missense mutation in alpha-tubulin fails to complement alleles of the testis-specific beta-tubulin gene of Drosophila melanogaster. Mol Cell Biol. 1989 Mar;9(3):875–884. doi: 10.1128/mcb.9.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holmes J. A., Dutcher S. K. Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci. 1989 Oct;94(Pt 2):273–285. doi: 10.1242/jcs.94.2.273. [DOI] [PubMed] [Google Scholar]
  17. Huang B., Ramanis Z., Dutcher S. K., Luck D. J. Uniflagellar mutants of Chlamydomonas: evidence for the role of basal bodies in transmission of positional information. Cell. 1982 Jul;29(3):745–753. doi: 10.1016/0092-8674(82)90436-6. [DOI] [PubMed] [Google Scholar]
  18. Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kennison J. A., Tamkun J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8136–8140. doi: 10.1073/pnas.85.21.8136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LeDizet M., Piperno G. Cytoplasmic microtubules containing acetylated alpha-tubulin in Chlamydomonas reinhardtii: spatial arrangement and properties. J Cell Biol. 1986 Jul;103(1):13–22. doi: 10.1083/jcb.103.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lechtreck K. F., Silflow C. D. SF-assemblin in Chlamydomonas: sequence conservation and localization during the cell cycle. Cell Motil Cytoskeleton. 1997;36(2):190–201. doi: 10.1002/(SICI)1097-0169(1997)36:2<190::AID-CM8>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  22. Lechtreck K. F., Teltenkötter A., Grunow A. A 210 kDa protein is located in a membrane-microtubule linker at the distal end of mature and nascent basal bodies. J Cell Sci. 1999 Jun;112(Pt 11):1633–1644. doi: 10.1242/jcs.112.11.1633. [DOI] [PubMed] [Google Scholar]
  23. Moestrup O. On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll A and B containing plants. Biosystems. 1978 Apr;10(1-2):117–144. doi: 10.1016/0303-2647(78)90035-7. [DOI] [PubMed] [Google Scholar]
  24. Nelson J. A., Savereide P. B., Lefebvre P. A. The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol. 1994 Jun;14(6):4011–4019. doi: 10.1128/mcb.14.6.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palombella A. L., Dutcher S. K. Identification of the gene encoding the tryptophan synthase beta-subunit from Chlamydomonas reinhardtii. Plant Physiol. 1998 Jun;117(2):455–464. doi: 10.1104/pp.117.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Piperno G., Siuda E., Henderson S., Segil M., Vaananen H., Sassaroli M. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J Cell Biol. 1998 Dec 14;143(6):1591–1601. doi: 10.1083/jcb.143.6.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Preble A. M., Giddings T. M., Jr, Dutcher S. K. Basal bodies and centrioles: their function and structure. Curr Top Dev Biol. 2000;49:207–233. doi: 10.1016/s0070-2153(99)49010-6. [DOI] [PubMed] [Google Scholar]
  28. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ruiz F., Garreau de Loubresse N., Beisson J. A mutation affecting basal body duplication and cell shape in Paramecium. J Cell Biol. 1987 Mar;104(3):417–430. doi: 10.1083/jcb.104.3.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  31. Schibler M. J., Huang B. The colR4 and colR15 beta-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J Cell Biol. 1991 May;113(3):605–614. doi: 10.1083/jcb.113.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schnell R. A., Lefebvre P. A. Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics. 1993 Jul;134(3):737–747. doi: 10.1093/genetics/134.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simon M. A., Bowtell D. D., Dodson G. S., Laverty T. R., Rubin G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 1991 Nov 15;67(4):701–716. doi: 10.1016/0092-8674(91)90065-7. [DOI] [PubMed] [Google Scholar]
  34. Sluder G., Miller F. J., Rieder C. L. Reproductive capacity of sea urchin centrosomes without centrioles. Cell Motil Cytoskeleton. 1989;13(4):264–273. doi: 10.1002/cm.970130405. [DOI] [PubMed] [Google Scholar]
  35. Sluder G., Rieder C. L. Centriole number and the reproductive capacity of spindle poles. J Cell Biol. 1985 Mar;100(3):887–896. doi: 10.1083/jcb.100.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stearns T., Botstein D. Unlinked noncomplementation: isolation of new conditional-lethal mutations in each of the tubulin genes of Saccharomyces cerevisiae. Genetics. 1988 Jun;119(2):249–260. doi: 10.1093/genetics/119.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tam L. W., Lefebvre P. A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics. 1993 Oct;135(2):375–384. doi: 10.1093/genetics/135.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Walther Z., Vashishtha M., Hall J. L. The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J Cell Biol. 1994 Jul;126(1):175–188. doi: 10.1083/jcb.126.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Winey M., Mamay C. L., O'Toole E. T., Mastronarde D. N., Giddings T. H., Jr, McDonald K. L., McIntosh J. R. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol. 1995 Jun;129(6):1601–1615. doi: 10.1083/jcb.129.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES