Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):361–368. doi: 10.1093/genetics/157.1.361

Development and applications of a complete set of rice telotrisomics.

Z Cheng 1, H Yan 1, H Yu 1, S Tang 1, J Jiang 1, M Gu 1, L Zhu 1
PMCID: PMC1461484  PMID: 11139516

Abstract

We previously isolated a complete set of primary trisomics along with many other aneuploids from triploid plants derived from an indica rice variety "Zhongxian 3037." About 30,000 progeny from these trisomic and aneuploid plants were grown each year from 1994 to 1999. The variants that differed morphologically from both the diploids and the original primary trisomics were collected for cytological identification. From these variants, a complete set of telotrisomics covering all 24 rice chromosome arms was obtained. The identities of the extra chromosomes were further confirmed by dosage analysis of the RFLP markers on extra chromosome arms. The telocentric nature of the extra chromosomes in these stocks was verified by fluorescence in situ hybridization (FISH) using a rice centromeric BAC clone as a marker probe. In general, the shorter the extra chromosome arm of a telotrisomic, the stronger the resemblance it bears to the diploid; the longer the extra chromosome arm, the stronger the resemblance to the corresponding primary trisomic. We demonstrated that DNA clones can be rapidly assigned to specific chromosome arms by dosage analysis with the telotrisomics. We also showed that telotrisomics are valuable tools for chromosome microdissection and for developing chromosome-specific DNA markers.

Full Text

The Full Text of this article is available as a PDF (938.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen Q., Armstrong K. Characterization of a library from a single microdissected oat (Avena sativa L.) chromosome. Genome. 1995 Aug;38(4):706–714. doi: 10.1139/g95-089. [DOI] [PubMed] [Google Scholar]
  2. Dong F., Miller J. T., Jackson S. A., Wang G. L., Ronald P. C., Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8135–8140. doi: 10.1073/pnas.95.14.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998 Jan;148(1):479–494. doi: 10.1093/genetics/148.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Houben A., Kynast R. G., Heim U., Hermann H., Jones R. N., Forster J. W. Molecular cytogenetic characterisation of the terminal heterochromatic segment of the B-chromosome of rye (Secale cereale). Chromosoma. 1996 Aug;105(2):97–103. doi: 10.1007/BF02509519. [DOI] [PubMed] [Google Scholar]
  5. Jamilena M., Garrido-Ramos M., Ruiz Rejón M., Ruiz Rejón C., Parker J. S. Characterisation of repeated sequences from microdissected B chromosomes of Crepis capillaris. Chromosoma. 1995 Nov;104(2):113–120. doi: 10.1007/BF00347693. [DOI] [PubMed] [Google Scholar]
  6. Jiang J., Gill B. S., Wang G. L., Ronald P. C., Ward D. C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4487–4491. doi: 10.1073/pnas.92.10.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaszás E., Birchler J. A. Misdivision analysis of centromere structure in maize. EMBO J. 1996 Oct 1;15(19):5246–5255. [PMC free article] [PubMed] [Google Scholar]
  8. Khush G. S., Singh R. J., Sur S. C., Librojo A. L. Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics. 1984 May;107(1):141–163. doi: 10.1093/genetics/107.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pich U., Houben A., Fuchs J., Meister A., Schubert I. Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field bean. Mol Gen Genet. 1994 Apr;243(2):173–177. doi: 10.1007/BF00280314. [DOI] [PubMed] [Google Scholar]
  10. Ponelies N., Stein N., Weber G. Microamplification of specific chromosome sequences; an improved method for genome analysis. Nucleic Acids Res. 1997 Sep 1;25(17):3555–3557. doi: 10.1093/nar/25.17.3555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rhoades M M. A Cytogenetic Study of a Chromosome Fragment in Maize. Genetics. 1936 Sep;21(5):491–502. doi: 10.1093/genetics/21.5.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scalenghe F., Turco E., Edström J. E., Pirrotta V., Melli M. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma. 1981;82(2):205–216. doi: 10.1007/BF00286105. [DOI] [PubMed] [Google Scholar]
  13. Singh K., Ishii T., Parco A., Huang N., Brar D. S., Khush G. S. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6163–6168. doi: 10.1073/pnas.93.12.6163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Singh K., Multani D. S., Khush G. S. Secondary trisomics and telotrisomics of rice: origin, characterization, and use in determining the orientation of chromosome map. Genetics. 1996 May;143(1):517–529. doi: 10.1093/genetics/143.1.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vega M., Abbo S., Feldman M., Levy A. A. Chromosome painting in plants: in situ hybridization with a DNA probe from a specific microdissected chromosome arm of common wheat. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12041–12045. doi: 10.1073/pnas.91.25.12041. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES