Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):399–411. doi: 10.1093/genetics/157.1.399

RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods.

N J Savill 1, D C Hoyle 1, P G Higgs 1
PMCID: PMC1461489  PMID: 11139520

Abstract

We test models for the evolution of helical regions of RNA sequences, where the base pairing constraint leads to correlated compensatory substitutions occurring on either side of the pair. These models are of three types: 6-state models include only the four Watson-Crick pairs plus GU and UG; 7-state models include a single mismatch state that combines all of the 10 possible mismatches; 16-state models treat all mismatch states separately. We analyzed a set of eubacterial ribosomal RNA sequences with a well-established phylogenetic tree structure. For each model, the maximum-likelihood values of the parameters were obtained. The models were compared using the Akaike information criterion, the likelihood-ratio test, and Cox's test. With a high significance level, models that permit a nonzero rate of double substitutions performed better than those that assume zero double substitution rate. Some models assume symmetry between GC and CG, between AU and UA, and between GU and UG. Models that relaxed this symmetry assumption performed slightly better, but the tests did not all agree on the significance level. The most general time-reversible model significantly outperformed any of the simplifications. We consider the relative merits of all these models for molecular phylogenetics.

Full Text

The Full Text of this article is available as a PDF (270.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  2. Gautheret D., Konings D., Gutell R. R. G.U base pairing motifs in ribosomal RNA. RNA. 1995 Oct;1(8):807–814. [PMC free article] [PubMed] [Google Scholar]
  3. Goldman N. Statistical tests of models of DNA substitution. J Mol Evol. 1993 Feb;36(2):182–198. doi: 10.1007/BF00166252. [DOI] [PubMed] [Google Scholar]
  4. Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  5. Higgs P. G. Compensatory neutral mutations and the evolution of RNA. Genetica. 1998;102-103(1-6):91–101. [PubMed] [Google Scholar]
  6. Kirby D. A., Muse S. V., Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. doi: 10.1073/pnas.92.20.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  8. Knudsen B., Hein J. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics. 1999 Jun;15(6):446–454. doi: 10.1093/bioinformatics/15.6.446. [DOI] [PubMed] [Google Scholar]
  9. Li W. H., Gu X. Estimating evolutionary distances between DNA sequences. Methods Enzymol. 1996;266:449–459. doi: 10.1016/s0076-6879(96)66028-5. [DOI] [PubMed] [Google Scholar]
  10. Maidak B. L., Cole J. R., Parker C. T., Jr, Garrity G. M., Larsen N., Li B., Lilburn T. G., McCaughey M. J., Olsen G. J., Overbeek R. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 1999 Jan 1;27(1):171–173. doi: 10.1093/nar/27.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Muse S. V. Evolutionary analyses of DNA sequences subject to constraints of secondary structure. Genetics. 1995 Mar;139(3):1429–1439. doi: 10.1093/genetics/139.3.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olsen G. J., Woese C. R. Ribosomal RNA: a key to phylogeny. FASEB J. 1993 Jan;7(1):113–123. doi: 10.1096/fasebj.7.1.8422957. [DOI] [PubMed] [Google Scholar]
  13. Otsuka J., Nakano T., Terai G. A theoretical study on the nucleotide changes under a definite functional constraint of forming stable base-pairs in the stem regions of ribosomal RNAs; its application to the phylogeny of eukaryotes. J Theor Biol. 1997 Jan 21;184(2):171–186. doi: 10.1006/jtbi.1996.0277. [DOI] [PubMed] [Google Scholar]
  14. Otsuka J., Terai G., Nakano T. Phylogeny of organisms investigated by the base-pair changes in the stem regions of small and large ribosomal subunit RNAs. J Mol Evol. 1999 Feb;48(2):218–235. doi: 10.1007/pl00006461. [DOI] [PubMed] [Google Scholar]
  15. Rousset F., Pélandakis M., Solignac M. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10032–10036. doi: 10.1073/pnas.88.22.10032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rzhetsky A. Estimating substitution rates in ribosomal RNA genes. Genetics. 1995 Oct;141(2):771–783. doi: 10.1093/genetics/141.2.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schöniger M., von Haeseler A. A stochastic model for the evolution of autocorrelated DNA sequences. Mol Phylogenet Evol. 1994 Sep;3(3):240–247. doi: 10.1006/mpev.1994.1026. [DOI] [PubMed] [Google Scholar]
  18. Stephan W. The rate of compensatory evolution. Genetics. 1996 Sep;144(1):419–426. doi: 10.1093/genetics/144.1.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tillier E. R., Collins R. A. High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA. Genetics. 1998 Apr;148(4):1993–2002. doi: 10.1093/genetics/148.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van de Peer Y., Caers A., De Rijk P., De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 1998 Jan 1;26(1):179–182. [PMC free article] [PubMed] [Google Scholar]
  21. Vawter L., Brown W. M. Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics. 1993 Jun;134(2):597–608. doi: 10.1093/genetics/134.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Waddell P. J., Steel M. A. General time-reversible distances with unequal rates across sites: mixing gamma and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol. 1997 Dec;8(3):398–414. doi: 10.1006/mpev.1997.0452. [DOI] [PubMed] [Google Scholar]
  23. Wheeler W. C., Honeycutt R. L. Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. Mol Biol Evol. 1988 Jan;5(1):90–96. doi: 10.1093/oxfordjournals.molbev.a040480. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES