Abstract
The ability to utilize formamide as a sole nitrogen source has been found in numerous fungi. We have cloned the fmdS gene encoding a formamidase from Aspergillus nidulans and found that it belongs to a highly conserved family of proteins separate from the major amidase families. The expression of fmdS is primarily regulated via AreA-mediated nitrogen metabolite repression and does not require the addition of exogenous inducer. Consistent with this, deletion analysis of the 5' region of fmdS has confirmed the presence of multiple AreA-binding sites containing a characteristic core GATA sequence. Under carbon starvation conditions the response to nitrogen starvation is eliminated, indicating that the lack of a carbon source may result in inactivation of AreA. Sequence analysis and isolation of cDNAs show that a gene of unknown function lies directly 5' of fmdS with its transcript overlapping the fmdS coding region. Disruption of the 5' gene and analysis of the effects of overexpression of this gene on fmdS expression has shown that expression of this upstream gene interferes with fmdS transcription, resulting in a strong dependence on AreA activation for expression. Therefore the relative position of these two genes is essential for normal regulation of fmdS.
Full Text
The Full Text of this article is available as a PDF (485.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adhya S., Gottesman M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell. 1982 Jul;29(3):939–944. doi: 10.1016/0092-8674(82)90456-1. [DOI] [PubMed] [Google Scholar]
- Andrianopoulos A., Hynes M. J. Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol. 1988 Aug;8(8):3532–3541. doi: 10.1128/mcb.8.8.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrianopoulos A., Kourambas S., Sharp J. A., Davis M. A., Hynes M. J. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol. 1998 Apr;180(7):1973–1977. doi: 10.1128/jb.180.7.1973-1977.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arst H. N., Jr, Cove D. J. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 2;126(2):111–141. doi: 10.1007/BF00330988. [DOI] [PubMed] [Google Scholar]
- Boussadia O., Amiot F., Cases S., Triqueneaux G., Jacquemin-Sablon H., Dautry F. Transcription of unr (upstream of N-ras) down-modulates N-ras expression in vivo. FEBS Lett. 1997 Dec 22;420(1):20–24. doi: 10.1016/s0014-5793(97)01479-8. [DOI] [PubMed] [Google Scholar]
- Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. W., Yu J. H., Kelkar H. S., Fernandes M., Nesbitt T. C., Keller N. P., Adams T. H., Leonard T. J. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418–1422. doi: 10.1073/pnas.93.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cobbett C. S., May M. J., Howden R., Rolls B. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J. 1998 Oct;16(1):73–78. doi: 10.1046/j.1365-313x.1998.00262.x. [DOI] [PubMed] [Google Scholar]
- Corbin V., Maniatis T. Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch. Nature. 1989 Jan 19;337(6204):279–282. doi: 10.1038/337279a0. [DOI] [PubMed] [Google Scholar]
- Corrick C. M., Twomey A. P., Hynes M. J. The nucleotide sequence of the amdS gene of Aspergillus nidulans and the molecular characterization of 5' mutations. Gene. 1987;53(1):63–71. doi: 10.1016/0378-1119(87)90093-x. [DOI] [PubMed] [Google Scholar]
- Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
- Cubero B., Scazzocchio C. Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 1994 Jan 15;13(2):407–415. doi: 10.1002/j.1460-2075.1994.tb06275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis M. A., Cobbett C. S., Hynes M. J. An amdS-lacZ fusion for studying gene regulation in Aspergillus. Gene. 1988 Mar 31;63(2):199–212. doi: 10.1016/0378-1119(88)90525-2. [DOI] [PubMed] [Google Scholar]
- Davis M. A., Kelly J. M., Hynes M. J. Fungal catabolic gene regulation: molecular genetic analysis of the amdS gene of Aspergillus nidulans. Genetica. 1993;90(2-3):133–145. doi: 10.1007/BF01435035. [DOI] [PubMed] [Google Scholar]
- Davis M. A., Small A. J., Kourambas S., Hynes M. J. The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J Bacteriol. 1996 Jun;178(11):3406–3409. doi: 10.1128/jb.178.11.3406-3409.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diallinas G., Gorfinkiel L., Arst H. N., Jr, Cecchetto G., Scazzocchio C. Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J Biol Chem. 1995 Apr 14;270(15):8610–8622. doi: 10.1074/jbc.270.15.8610. [DOI] [PubMed] [Google Scholar]
- Draper P. The aliphatic acylamide amidohydrolase of Mycobacterium smegmatis: its inducible nature and relation to acyl-transfer to hydroxylamine. J Gen Microbiol. 1967 Jan;46(1):111–123. doi: 10.1099/00221287-46-1-111. [DOI] [PubMed] [Google Scholar]
- Dujon B. The yeast genome project: what did we learn? Trends Genet. 1996 Jul;12(7):263–270. doi: 10.1016/0168-9525(96)10027-5. [DOI] [PubMed] [Google Scholar]
- Dunn-Coleman N. S., Tomsett A. B., Garrett R. H. The regulation of nitrate assimilation in Neurospora crassa: biochemical analysis of the nmr-1 mutants. Mol Gen Genet. 1981;182(2):234–239. doi: 10.1007/BF00269663. [DOI] [PubMed] [Google Scholar]
- Eggermont J., Proudfoot N. J. Poly(A) signals and transcriptional pause sites combine to prevent interference between RNA polymerase II promoters. EMBO J. 1993 Jun;12(6):2539–2548. doi: 10.1002/j.1460-2075.1993.tb05909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferber D. M., Khambaty F., Ely B. Utilization of histidine by Caulobacter crescentus. J Gen Microbiol. 1988 Aug;134(8):2149–2154. doi: 10.1099/00221287-134-8-2149. [DOI] [PubMed] [Google Scholar]
- Fillinger S., Panozzo C., Mathieu M., Felenbok B. The basal level of transcription of the alc genes in the ethanol regulon in Aspergillus nidulans is controlled both by the specific transactivator AlcR and the general carbon catabolite repressor CreA. FEBS Lett. 1995 Jul 24;368(3):547–550. doi: 10.1016/0014-5793(95)00736-s. [DOI] [PubMed] [Google Scholar]
- Gonzalez R., Gavrias V., Gomez D., Scazzocchio C., Cubero B. The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element, ADA. EMBO J. 1997 May 15;16(10):2937–2944. doi: 10.1093/emboj/16.10.2937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorfinkiel L., Diallinas G., Scazzocchio C. Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J Biol Chem. 1993 Nov 5;268(31):23376–23381. [PubMed] [Google Scholar]
- Greger I. H., Aranda A., Proudfoot N. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8415–8420. doi: 10.1073/pnas.140217697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ha S. B., Smith A. P., Howden R., Dietrich W. M., Bugg S., O'Connell M. J., Goldsbrough P. B., Cobbett C. S. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell. 1999 Jun;11(6):1153–1164. doi: 10.1105/tpc.11.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchings H., Stahmann K. P., Roels S., Espeso E. A., Timberlake W. E., Arst H. N., Jr, Tilburn J. The multiply-regulated gabA gene encoding the GABA permease of Aspergillus nidulans: a score of exons. Mol Microbiol. 1999 May;32(3):557–568. doi: 10.1046/j.1365-2958.1999.01371.x. [DOI] [PubMed] [Google Scholar]
- Hynes M. J. Amide utilization in Aspergillus nidulans: evidence for a third amidase enzyme. J Gen Microbiol. 1975 Nov;91(1):99–109. doi: 10.1099/00221287-91-1-99. [DOI] [PubMed] [Google Scholar]
- Hynes M. J. Induction and repression of amidase enzymes in Aspergillus nidulans. J Bacteriol. 1970 Aug;103(2):482–487. doi: 10.1128/jb.103.2.482-487.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes M. J. Mutants with altered glucose repression of amidase enzymes in Aspergillus nidulans. J Bacteriol. 1972 Sep;111(3):717–722. doi: 10.1128/jb.111.3.717-722.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes M. J., Pateman J. A. The use of amides as nitrogen sources by Aspergillus nidulans. J Gen Microbiol. 1970 Nov;63(3):317–324. doi: 10.1099/00221287-63-3-317. [DOI] [PubMed] [Google Scholar]
- Hynes M. J. The effect of lack of a carbon source on nitrate-reductase activity in Aspergillus nidulans. J Gen Microbiol. 1973 Nov;79(1):155–157. doi: 10.1099/00221287-79-1-155. [DOI] [PubMed] [Google Scholar]
- Irniger S., Egli C. M., Kuenzler M., Braus G. H. The yeast actin intron contains a cryptic promoter that can be switched on by preventing transcriptional interference. Nucleic Acids Res. 1992 Sep 25;20(18):4733–4739. doi: 10.1093/nar/20.18.4733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnstone I. L., McCabe P. C., Greaves P., Gurr S. J., Cole G. E., Brow M. A., Unkles S. E., Clutterbuck A. J., Kinghorn J. R., Innis M. A. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene. 1990 Jun 15;90(2):181–192. doi: 10.1016/0378-1119(90)90178-t. [DOI] [PubMed] [Google Scholar]
- Kudla B., Caddick M. X., Langdon T., Martinez-Rossi N. M., Bennett C. F., Sibley S., Davies R. W., Arst H. N., Jr The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 1990 May;9(5):1355–1364. doi: 10.1002/j.1460-2075.1990.tb08250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunz D. A., Wang C. S., Chen J. L. Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. Microbiology. 1994 Jul;140(Pt 7):1705–1712. doi: 10.1099/13500872-140-7-1705. [DOI] [PubMed] [Google Scholar]
- Langdon T., Sheerins A., Ravagnani A., Gielkens M., Caddick M. X., Arst H. N., Jr Mutational analysis reveals dispensability of the N-terminal region of the Aspergillus transcription factor mediating nitrogen metabolite repression. Mol Microbiol. 1995 Sep;17(5):877–888. doi: 10.1111/j.1365-2958.1995.mmi_17050877.x. [DOI] [PubMed] [Google Scholar]
- Levitt N., Briggs D., Gil A., Proudfoot N. J. Definition of an efficient synthetic poly(A) site. Genes Dev. 1989 Jul;3(7):1019–1025. doi: 10.1101/gad.3.7.1019. [DOI] [PubMed] [Google Scholar]
- Marzluf G. A. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev. 1997 Mar;61(1):17–32. doi: 10.1128/mmbr.61.1.17-32.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May G. S., Tsang M. L., Smith H., Fidel S., Morris N. R. Aspergillus nidulans beta-tubulin genes are unusually divergent. Gene. 1987;55(2-3):231–243. doi: 10.1016/0378-1119(87)90283-6. [DOI] [PubMed] [Google Scholar]
- Miller B. L., Miller K. Y., Roberti K. A., Timberlake W. E. Position-dependent and -independent mechanisms regulate cell-specific expression of the SpoC1 gene cluster of Aspergillus nidulans. Mol Cell Biol. 1987 Jan;7(1):427–434. doi: 10.1128/mcb.7.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muñoz G. A., Agosin E. Glutamine Involvement in Nitrogen Control of Gibberellic Acid Production in Gibberella fujikuroi. Appl Environ Microbiol. 1993 Dec;59(12):4317–4322. doi: 10.1128/aem.59.12.4317-4322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narendja F. M., Davis M. A., Hynes M. J. AnCF, the CCAAT binding complex of Aspergillus nidulans, is essential for the formation of a DNase I-hypersensitive site in the 5' region of the amdS gene. Mol Cell Biol. 1999 Oct;19(10):6523–6531. doi: 10.1128/mcb.19.10.6523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley B. R., Rinehart J. E., Mitchell B. L., Oakley C. E., Carmona C., Gray G. L., May G. S. Cloning, mapping and molecular analysis of the pyrG (orotidine-5'-phosphate decarboxylase) gene of Aspergillus nidulans. Gene. 1987;61(3):385–399. doi: 10.1016/0378-1119(87)90201-0. [DOI] [PubMed] [Google Scholar]
- Oakley C. E., Weil C. F., Kretz P. L., Oakley B. R. Cloning of the riboB locus of Aspergillus nidulans. Gene. 1987;53(2-3):293–298. doi: 10.1016/0378-1119(87)90019-9. [DOI] [PubMed] [Google Scholar]
- Panozzo C., Cornillot E., Felenbok B. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem. 1998 Mar 13;273(11):6367–6372. doi: 10.1074/jbc.273.11.6367. [DOI] [PubMed] [Google Scholar]
- Papagiannopoulos P., Andrianopoulos A., Sharp J. A., Davis M. A., Hynes M. J. The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. Mol Gen Genet. 1996 Jun 24;251(4):412–421. doi: 10.1007/BF02172369. [DOI] [PubMed] [Google Scholar]
- Peterson J. A., Myers A. M. Functional analysis of mRNA 3' end formation signals in the convergent and overlapping transcription units of the S. cerevisiae genes RHO1 and MRP2. Nucleic Acids Res. 1993 Nov 25;21(23):5500–5508. doi: 10.1093/nar/21.23.5500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt A., Langdon T., Arst H. N., Jr, Kirk D., Tollervey D., Sanchez J. M., Caddick M. X. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA. EMBO J. 1996 Jun 3;15(11):2791–2801. [PMC free article] [PubMed] [Google Scholar]
- Platt A., Ravagnani A., Arst H., Jr, Kirk D., Langdon T., Caddick M. X. Mutational analysis of the C-terminal region of AREA, the transcription factor mediating nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1996 Jan 15;250(1):106–114. doi: 10.1007/BF02191830. [DOI] [PubMed] [Google Scholar]
- Polkinghorne M. A., Hynes M. J. L-histidine utilization in Aspergillus nidulans. J Bacteriol. 1982 Mar;149(3):931–940. doi: 10.1128/jb.149.3.931-940.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prade R. A., Griffith J., Kochut K., Arnold J., Timberlake W. E. In vitro reconstruction of the Aspergillus (= Emericella) nidulans genome. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14564–14569. doi: 10.1073/pnas.94.26.14564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proudfoot N. Poly(A) signals. Cell. 1991 Feb 22;64(4):671–674. doi: 10.1016/0092-8674(91)90495-k. [DOI] [PubMed] [Google Scholar]
- Puig S., Pérez-Ortín J. E., Matallana E. Transcriptional and structural study of a region of two convergent overlapping yeast genes. Curr Microbiol. 1999 Dec;39(6):369–0373. doi: 10.1007/s002849900474. [DOI] [PubMed] [Google Scholar]
- Punt P. J., Dingemanse M. A., Kuyvenhoven A., Soede R. D., Pouwels P. H., van den Hondel C. A. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene. 1990 Sep 1;93(1):101–109. doi: 10.1016/0378-1119(90)90142-e. [DOI] [PubMed] [Google Scholar]
- Punt P. J., Strauss J., Smit R., Kinghorn J. R., van den Hondel C. A., Scazzocchio C. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Mol Cell Biol. 1995 Oct;15(10):5688–5699. doi: 10.1128/mcb.15.10.5688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quirós S., Gené J. A., Gutiérrez J. M., Thelestam M. Effect of Bothrops asper (Fer-De-Lance) snake venom on erythrocyte membrane. A comparative study. Comp Biochem Physiol C. 1992 Feb;101(2):433–436. doi: 10.1016/0742-8413(92)90299-m. [DOI] [PubMed] [Google Scholar]
- Ravagnani A., Gorfinkiel L., Langdon T., Diallinas G., Adjadj E., Demais S., Gorton D., Arst H. N., Jr, Scazzocchio C. Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J. 1997 Jul 1;16(13):3974–3986. doi: 10.1093/emboj/16.13.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small A. J., Hynes M. J., Davis M. A. The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans. Genetics. 1999 Sep;153(1):95–105. doi: 10.1093/genetics/153.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steidl S., Papagiannopoulos P., Litzka O., Andrianopoulos A., Davis M. A., Brakhage A. A., Hynes M. J. AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC, and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol Cell Biol. 1999 Jan;19(1):99–106. doi: 10.1128/mcb.19.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tusnády G. E., Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 1998 Oct 23;283(2):489–506. doi: 10.1006/jmbi.1998.2107. [DOI] [PubMed] [Google Scholar]
- Wang P., Matthews D. E., VanEtten H. D. Purification and characterization of cyanide hydratase from the phytopathogenic fungus Gloeocercospora sorghi. Arch Biochem Biophys. 1992 Nov 1;298(2):569–575. doi: 10.1016/0003-9861(92)90451-2. [DOI] [PubMed] [Google Scholar]
- Wang P., Sandrock R. W., VanEtten H. D. Disruption of the cyanide hydratase gene in Gloeocercospora sorghi increases its sensitivity to the phytoanticipin cyanide but does not affect its pathogenicity on the cyanogenic plant sorghum. Fungal Genet Biol. 1999 Nov;28(2):126–134. doi: 10.1006/fgbi.1999.1167. [DOI] [PubMed] [Google Scholar]
- Wu H. Y., Shyy S. H., Wang J. C., Liu L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell. 1988 May 6;53(3):433–440. doi: 10.1016/0092-8674(88)90163-8. [DOI] [PubMed] [Google Scholar]
- Wyborn N. R., Mills J., Williams S. G., Jones C. W. Molecular characterisation of formamidase from Methylophilus methylotrophus. Eur J Biochem. 1996 Sep 1;240(2):314–322. doi: 10.1111/j.1432-1033.1996.0314h.x. [DOI] [PubMed] [Google Scholar]
- Xiao X., Fu Y. H., Marzluf G. A. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry. 1995 Jul 11;34(27):8861–8868. doi: 10.1021/bi00027a038. [DOI] [PubMed] [Google Scholar]