Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Oct 1;24(19):3790–3796. doi: 10.1093/nar/24.19.3790

Purification and biochemical analyses of a monomeric form of Tn5 transposase.

D York 1, W S Reznikoff 1
PMCID: PMC146150  PMID: 8871560

Abstract

The binding of transposase (Tnp) to the specific Tn5 end sequences is the first dedicated reaction during transposition. In this study, comparative DNA-binding analyses were performed using purified full-length Tnp and a C-terminal deletion variant (delta369) that lacks the putative dimerization domain. The shape of the binding curve of full-length Tnp is sigmoidal in contrast to the hyperbolic-shaped binding curve of delta369. This observation is consistent with previous observations as well as a rate of binding study presented here, which suggest that the full-length Tnp-end interaction, unlike that of the truncated protein, is a complex time-dependent reaction possibly involving a subunit exchange. Circular permutation assay results indicate that both proteins are capable of distorting the Tn5end sequences upon binding. Molecular weight determinations based on the migratory patterns of complexed DNA in polyacrylamide gels has shown that delta369 specifically binds the Tn5 end sequences as a monomer while full-length Tnp in complex represents a heterodimer.

Full Text

The Full Text of this article is available as a PDF (110.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arciszewska L. K., Craig N. L. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucleic Acids Res. 1991 Sep 25;19(18):5021–5029. doi: 10.1093/nar/19.18.5021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. M., Crothers D. M. Modulation of the stability of a gene-regulatory protein dimer by DNA and cAMP. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7387–7391. doi: 10.1073/pnas.86.19.7387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cui Y., Midkiff M. A., Wang Q., Calvo J. M. The leucine-responsive regulatory protein (Lrp) from Escherichia coli. Stoichiometry and minimal requirements for binding to DNA. J Biol Chem. 1996 Mar 22;271(12):6611–6617. doi: 10.1074/jbc.271.12.6611. [DOI] [PubMed] [Google Scholar]
  4. Derbyshire K. M., Grindley N. D. Binding of the IS903 transposase to its inverted repeat in vitro. EMBO J. 1992 Sep;11(9):3449–3455. doi: 10.1002/j.1460-2075.1992.tb05424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Halford S. E., Johnson N. P. The EcoRI restriction endonuclease with bacteriophage lambda DNA. Equilibrium binding studies. Biochem J. 1980 Nov 1;191(2):593–604. doi: 10.1042/bj1910593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jilk R. A., York D., Reznikoff W. S. The organization of the outside end of transposon Tn5. J Bacteriol. 1996 Mar;178(6):1671–1679. doi: 10.1128/jb.178.6.1671-1679.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson R. C., Yin J. C., Reznikoff W. S. Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell. 1982 Oct;30(3):873–882. doi: 10.1016/0092-8674(82)90292-6. [DOI] [PubMed] [Google Scholar]
  8. Krajewski W., Lee K. A. A monomeric derivative of the cellular transcription factor CREB functions as a constitutive activator. Mol Cell Biol. 1994 Nov;14(11):7204–7210. doi: 10.1128/mcb.14.11.7204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krebs M. P., Reznikoff W. S. Transcriptional and translational initiation sites of IS50. Control of transposase and inhibitor expression. J Mol Biol. 1986 Dec 20;192(4):781–791. doi: 10.1016/0022-2836(86)90028-8. [DOI] [PubMed] [Google Scholar]
  10. Kuo C. F., Zou A. H., Jayaram M., Getzoff E., Harshey R. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. EMBO J. 1991 Jun;10(6):1585–1591. doi: 10.1002/j.1460-2075.1991.tb07679.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lamb P., McKnight S. L. Diversity and specificity in transcriptional regulation: the benefits of heterotypic dimerization. Trends Biochem Sci. 1991 Nov;16(11):417–422. doi: 10.1016/0968-0004(91)90167-t. [DOI] [PubMed] [Google Scholar]
  12. Moore J. T., Uppal A., Maley F., Maley G. F. Overcoming inclusion body formation in a high-level expression system. Protein Expr Purif. 1993 Apr;4(2):160–163. doi: 10.1006/prep.1993.1022. [DOI] [PubMed] [Google Scholar]
  13. Orchard K., May G. E. An EMSA-based method for determining the molecular weight of a protein--DNA complex. Nucleic Acids Res. 1993 Jul 11;21(14):3335–3336. doi: 10.1093/nar/21.14.3335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reznikoff W. S. The Tn5 transposon. Annu Rev Microbiol. 1993;47:945–963. doi: 10.1146/annurev.mi.47.100193.004501. [DOI] [PubMed] [Google Scholar]
  15. Rezsöhazy R., Hallet B., Delcour J., Mahillon J. The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol Microbiol. 1993 Sep;9(6):1283–1295. doi: 10.1111/j.1365-2958.1993.tb01258.x. [DOI] [PubMed] [Google Scholar]
  16. Thompson J. F., Landy A. Empirical estimation of protein-induced DNA bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res. 1988 Oct 25;16(20):9687–9705. doi: 10.1093/nar/16.20.9687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weinreich M. D., Mahnke-Braam L., Reznikoff W. S. A functional analysis of the Tn5 transposase. Identification of domains required for DNA binding and multimerization. J Mol Biol. 1994 Aug 12;241(2):166–177. doi: 10.1006/jmbi.1994.1486. [DOI] [PubMed] [Google Scholar]
  18. Wiegand T. W., Reznikoff W. S. Characterization of two hypertransposing Tn5 mutants. J Bacteriol. 1992 Feb;174(4):1229–1239. doi: 10.1128/jb.174.4.1229-1239.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wiegand T. W., Reznikoff W. S. Interaction of Tn5 transposase with the transposon termini. J Mol Biol. 1994 Jan 14;235(2):486–495. doi: 10.1006/jmbi.1994.1008. [DOI] [PubMed] [Google Scholar]
  20. Zhou Y., Zhang X., Ebright R. H. Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6081–6085. doi: 10.1073/pnas.90.13.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de la Cruz N. B., Weinreich M. D., Wiegand T. W., Krebs M. P., Reznikoff W. S. Characterization of the Tn5 transposase and inhibitor proteins: a model for the inhibition of transposition. J Bacteriol. 1993 Nov;175(21):6932–6938. doi: 10.1128/jb.175.21.6932-6938.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES