Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):655–666. doi: 10.1093/genetics/157.2.655

Genetic mapping of quantitative trait loci governing longevity of Caenorhabditis elegans in recombinant-inbred progeny of a Bergerac-BO x RC301 interstrain cross.

S Ayyadevara 1, R Ayyadevara 1, S Hou 1, J J Thaden 1, R J Shmookler Reis 1
PMCID: PMC1461506  PMID: 11156986

Abstract

Recombinant-inbred populations, generated from a cross between Caenorhabditis elegans strains Bergerac-BO and RC301, were used to identify quantitative trait loci (QTL) affecting nematode longevity. Genotypes of young controls and longevity-selected worms (the last-surviving 1% from a synchronously aged population) were assessed at dimorphic transposon-specific markers by multiplex polymerase chain reaction. The power of genetic mapping was enhanced, in a novel experimental design, through map expansion by accrual of recombinations over several generations, internally controlled longevity selection from a genetically heterogeneous, homozygous population, and selective genotyping of extremely long-lived worms. Analysis of individual markers indicated seven life-span QTL, situated near markers on chromosomes I (tcbn2), III (stP127), IV (stP13), V (stP6, stP23, and stP128), and X (stP41). These loci were corroborated, and mapped with increased precision, by nonparametric interval mapping-which supported all loci implicated by single-marker analysis. In addition, a life-span QTL on chromosome II (stP100-stP196), was significant only by interval mapping. Congenic lines were constructed for the longevity QTL on chromosomes III and X, by backcrossing the Bergerac-BO QTL allele into an RC301 background with selection for flanking markers. Survival data for these lines demonstrated consistent and significant effects of each QTL on life span.

Full Text

The Full Text of this article is available as a PDF (288.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
  2. Ayyadevara S., Thaden J. J., Shmookler Reis R. J. Anchor polymerase chain reaction display: a high-throughput method to resolve, score, and isolate dimorphic genetic markers based on interspersed repetitive DNA elements. Anal Biochem. 2000 Aug 15;284(1):19–28. doi: 10.1006/abio.2000.4636. [DOI] [PubMed] [Google Scholar]
  3. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  4. Causse M. A., Fulton T. M., Cho Y. G., Ahn S. N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P. C., Harrington S. E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994 Dec;138(4):1251–1274. doi: 10.1093/genetics/138.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dreyfus D. H., Emmons S. W. A transposon-related palindromic repetitive sequence from C. elegans. Nucleic Acids Res. 1991 Apr 25;19(8):1871–1877. doi: 10.1093/nar/19.8.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ebert R. H., 2nd, Cherkasova V. A., Dennis R. A., Wu J. H., Ruggles S., Perrin T. E., Shmookler Reis R. J. Longevity-determining genes in Caenorhabditis elegans: chromosomal mapping of multiple noninteractive loci. Genetics. 1993 Dec;135(4):1003–1010. doi: 10.1093/genetics/135.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebert R. H., 2nd, Shammas M. A., Sohal B. H., Sohal R. S., Egilmez N. K., Ruggles S., Shmookler Reis R. J. Defining genes that govern longevity in Caenorhabditis elegans. Dev Genet. 1996;18(2):131–143. doi: 10.1002/(SICI)1520-6408(1996)18:2<131::AID-DVG6>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  9. Egilmez N. K., Ebert R. H., 2nd, Shmookler Reis R. J. Strain evolution in Caenorhabditis elegans: transposable elements as markers of interstrain evolutionary history. J Mol Evol. 1995 Apr;40(4):372–381. doi: 10.1007/BF00164023. [DOI] [PubMed] [Google Scholar]
  10. Ewbank J. J., Barnes T. M., Lakowski B., Lussier M., Bussey H., Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science. 1997 Feb 14;275(5302):980–983. doi: 10.1126/science.275.5302.980. [DOI] [PubMed] [Google Scholar]
  11. Fabian T. J., Johnson T. E. Production of age-synchronous mass cultures of Caenorhabditis elegans. J Gerontol. 1994 Jul;49(4):B145–B156. doi: 10.1093/geronj/49.4.b145. [DOI] [PubMed] [Google Scholar]
  12. Flanagan J. R. Detecting early-life components in the determination of the age of death. Mech Ageing Dev. 1980 May;13(1):41–62. doi: 10.1016/0047-6374(80)90129-3. [DOI] [PubMed] [Google Scholar]
  13. Hutchinson E. W., Rose M. R. Quantitative genetics of postponed aging in Drosophila melanogaster. I. Analysis of outbred populations. Genetics. 1991 Apr;127(4):719–727. doi: 10.1093/genetics/127.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson T. E., Hutchinson E. W. Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics. 1993 Jun;134(2):465–474. doi: 10.1093/genetics/134.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson T. E., Wood W. B. Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6603–6607. doi: 10.1073/pnas.79.21.6603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kimura K. D., Tissenbaum H. A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997 Aug 15;277(5328):942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
  17. Kruglyak L., Lander E. S. A nonparametric approach for mapping quantitative trait loci. Genetics. 1995 Mar;139(3):1421–1428. doi: 10.1093/genetics/139.3.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lakowski B., Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science. 1996 May 17;272(5264):1010–1013. doi: 10.1126/science.272.5264.1010. [DOI] [PubMed] [Google Scholar]
  19. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  21. Leips J., Mackay T. F. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics. 2000 Aug;155(4):1773–1788. doi: 10.1093/genetics/155.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liao L. W., Rosenzweig B., Hirsh D. Analysis of a transposable element in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3585–3589. doi: 10.1073/pnas.80.12.3585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lin K., Dorman J. B., Rodan A., Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997 Nov 14;278(5341):1319–1322. doi: 10.1126/science.278.5341.1319. [DOI] [PubMed] [Google Scholar]
  24. Moerman D. G., Waterston R. H. Spontaneous unstable unc-22 IV mutations in C. elegans var. Bergerac. Genetics. 1984 Dec;108(4):859–877. doi: 10.1093/genetics/108.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mori I., Moerman D. G., Waterston R. H. Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. Genetics. 1988 Oct;120(2):397–407. doi: 10.1093/genetics/120.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morris J. Z., Tissenbaum H. A., Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996 Aug 8;382(6591):536–539. doi: 10.1038/382536a0. [DOI] [PubMed] [Google Scholar]
  27. Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z. B., Mackay T. F. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9734–9739. doi: 10.1073/pnas.94.18.9734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997 Oct 30;389(6654):994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  29. Roberts S. B., MacLean C. J., Neale M. C., Eaves L. J., Kendler K. S. Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet. 1999 Sep;65(3):876–884. doi: 10.1086/302528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shmookler Reis R. J., Ebert R. H., 2nd Genetics of aging: current animal models. Exp Gerontol. 1996 Jan-Apr;31(1-2):69–81. doi: 10.1016/0531-5565(95)00019-4. [DOI] [PubMed] [Google Scholar]
  31. Shmookler Reis R. J. Model systems for aging research: syncretic concepts and diversity of mechanisms. Genome. 1989;31(1):406–412. doi: 10.1139/g89-061. [DOI] [PubMed] [Google Scholar]
  32. Shook D. R., Brooks A., Johnson T. E. Mapping quantitative trait loci affecting life history traits in the nematode Caenorhabditis elegans. Genetics. 1996 Mar;142(3):801–817. doi: 10.1093/genetics/142.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tanksley S. D. Mapping polygenes. Annu Rev Genet. 1993;27:205–233. doi: 10.1146/annurev.ge.27.120193.001225. [DOI] [PubMed] [Google Scholar]
  34. Tissenbaum H. A., Ruvkun G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998 Feb;148(2):703–717. doi: 10.1093/genetics/148.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xu S., Atchley W. R. Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics. 1996 Jul;143(3):1417–1424. doi: 10.1093/genetics/143.3.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xu S., Yonash N., Vallejo R. L., Cheng H. H. Mapping quantitative trait loci for binary traits using a heterogeneous residual variance model: an application to Marek's disease susceptibility in chickens. Genetica. 1998;104(2):171–178. doi: 10.1023/a:1003522902078. [DOI] [PubMed] [Google Scholar]
  38. Xu Y., Zhu L., Xiao J., Huang N., McCouch S. R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet. 1997 Feb 20;253(5):535–545. doi: 10.1007/s004380050355. [DOI] [PubMed] [Google Scholar]
  39. Yunis E. J., Watson A. L., Gelman R. S., Sylvia S. J., Bronson R., Dorf M. E. Traits that influence longevity in mice. Genetics. 1984 Dec;108(4):999–1011. doi: 10.1093/genetics/108.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van Swinderen B., Shook D. R., Ebert R. H., Cherkasova V. A., Johnson T. E., Shmookler Reis R. J., Crowder C. M. Quantitative trait loci controlling halothane sensitivity in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8232–8237. doi: 10.1073/pnas.94.15.8232. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES