Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):491–502. doi: 10.1093/genetics/157.2.491

Genetic mapping by duplication segregation in Salmonella enterica.

E M Camacho 1, J Casadesús 1
PMCID: PMC1461514  PMID: 11156973

Abstract

MudP and MudQ elements were used to induce duplications in Salmonella enterica by formation of a triple crossover between two transduced fragments and the host chromosome. The large size (36 kb) of MudP and MudQ is a favorable trait for duplication formation, probably because homology length is a limiting factor for the central crossover. Additional requirements are a multiplicity of infection of 2 or higher in the infecting phage suspensions (which reflects the need of two transduced fragments) and an exponentially growing recipient (which reflects the need of a chromosome replication fork). We describe a set of 11 strains of S. enterica, each carrying a chromosomal duplication with known endpoints. The collection covers all the Salmonella chromosome except the terminus. For mapping, a dominant marker (e.g., a transposon insertion in or near the locus to be mapped) is transduced into the 11-strain set. Several transductants from each cross are grown nonselectively, and haploid segregants are scored for the presence of the marker. If all the segregants contain the transduced marker, it maps outside the duplication interval. If the marker is found only in a fraction of the segregants, it maps within the duplicated region.

Full Text

The Full Text of this article is available as a PDF (261.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. P., Miller C. G., Roth J. R. Tandem duplications of the histidine operon observed following generalized transduction in Salmonella typhimurium. J Mol Biol. 1976 Aug 5;105(2):201–218. doi: 10.1016/0022-2836(76)90107-8. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. P., Roth J. R. Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol. 1977;31:473–505. doi: 10.1146/annurev.mi.31.100177.002353. [DOI] [PubMed] [Google Scholar]
  3. Benson N. R., Goldman B. S. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol. 1992 Mar;174(5):1673–1681. doi: 10.1128/jb.174.5.1673-1681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Botstein D., Matz M. J. A recombination function essential to the growth of bacteriophage P22. J Mol Biol. 1970 Dec 28;54(3):417–440. doi: 10.1016/0022-2836(70)90119-1. [DOI] [PubMed] [Google Scholar]
  5. Botstein K., Lew K. K., Jarvik V., Swanson C. A. Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P22. J Mol Biol. 1975 Feb 5;91(4):439–462. doi: 10.1016/0022-2836(75)90271-5. [DOI] [PubMed] [Google Scholar]
  6. Casjens S., Hayden M. Analysis in vivo of the bacteriophage P22 headful nuclease. J Mol Biol. 1988 Feb 5;199(3):467–474. doi: 10.1016/0022-2836(88)90618-3. [DOI] [PubMed] [Google Scholar]
  7. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan R. K., Botstein D., Watanabe T., Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. doi: 10.1016/0042-6822(72)90442-4. [DOI] [PubMed] [Google Scholar]
  9. Chumley F. G., Menzel R., Roth J. R. Hfr formation directed by tn10. Genetics. 1979 Apr;91(4):639–655. doi: 10.1093/genetics/91.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Conner C. P., Heithoff D. M., Julio S. M., Sinsheimer R. L., Mahan M. J. Differential patterns of acquired virulence genes distinguish Salmonella strains. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4641–4645. doi: 10.1073/pnas.95.8.4641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Demerec M., Blomstrand I., Demerec Z. E. EVIDENCE OF COMPLEX LOCI IN SALMONELLA. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):359–364. doi: 10.1073/pnas.41.6.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ebel-Tsipis J., Fox M. S., Botstein D. Generalized transduction by bacteriophage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):449–469. doi: 10.1016/0022-2836(72)90362-2. [DOI] [PubMed] [Google Scholar]
  13. Flores A., Casadesús J. Suppression of the pleiotropic effects of HisH and HisF overproduction identifies four novel loci on the Salmonella typhimurium chromosome: osmH, sfiW, sfiX, and sfiY. J Bacteriol. 1995 Sep;177(17):4841–4850. doi: 10.1128/jb.177.17.4841-4850.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garzón A., Cano D. A., Casadesús J. Role of Erf recombinase in P22-mediated plasmid transduction. Genetics. 1995 Jun;140(2):427–434. doi: 10.1093/genetics/140.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill C. W., Schiffer D., Berg P. Transduction of merodiploidy: induced duplication of recipient genes. J Bacteriol. 1969 Jul;99(1):274–278. doi: 10.1128/jb.99.1.274-278.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoiseth S. K., Stocker B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981 May 21;291(5812):238–239. doi: 10.1038/291238a0. [DOI] [PubMed] [Google Scholar]
  17. Hughes K. T., Olivera B. M., Roth J. R. Rec dependence of mu transposition from P22-transduced fragments. J Bacteriol. 1987 Jan;169(1):403–409. doi: 10.1128/jb.169.1.403-409.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hughes K. T., Roth J. R. Conditionally transposition-defective derivative of Mu d1(Amp Lac). J Bacteriol. 1984 Jul;159(1):130–137. doi: 10.1128/jb.159.1.130-137.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hughes K. T., Roth J. R. Directed formation of deletions and duplications using Mud(Ap, lac). Genetics. 1985 Feb;109(2):263–282. doi: 10.1093/genetics/109.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
  21. Lam S., Roth J. R. IS200: a Salmonella-specific insertion sequence. Cell. 1983 Oct;34(3):951–960. doi: 10.1016/0092-8674(83)90552-4. [DOI] [PubMed] [Google Scholar]
  22. Mahillon J., Chandler M. Insertion sequences. Microbiol Mol Biol Rev. 1998 Sep;62(3):725–774. doi: 10.1128/mmbr.62.3.725-774.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miesel L., Roth J. R. Evidence that SbcB and RecF pathway functions contribute to RecBCD-dependent transductional recombination. J Bacteriol. 1996 Jun;178(11):3146–3155. doi: 10.1128/jb.178.11.3146-3155.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miesel L., Roth J. R. Salmonella recD mutations increase recombination in a short sequence transduction assay. J Bacteriol. 1994 Jul;176(13):4092–4103. doi: 10.1128/jb.176.13.4092-4103.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SCHAECHTER M., BENTZON M. W., MAALOE O. Synthesis of deoxyribonucleic acid during the division cycle of bacteria. Nature. 1959 Apr 25;183(4669):1207–1208. doi: 10.1038/1831207a0. [DOI] [PubMed] [Google Scholar]
  26. Schmieger H. Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet. 1972;119(1):75–88. doi: 10.1007/BF00270447. [DOI] [PubMed] [Google Scholar]
  27. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  28. Youderian P., Sugiono P., Brewer K. L., Higgins N. P., Elliott T. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics. 1988 Apr;118(4):581–592. doi: 10.1093/genetics/118.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES