Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):503–518. doi: 10.1093/genetics/157.2.503

Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication.

I Ivanovska 1, M D Rose 1
PMCID: PMC1461518  PMID: 11156974

Abstract

Centrin/Cdc31p is a Ca2+-binding protein related to calmodulin found in the MTOC of diverse organisms. In yeast, Cdc31p localizes to the SPB where it interacts with Kar1p and is required for SPB duplication. Recent findings suggest that centrin also functions elsewhere in the cell. To dissect the functions of Cdc31p, we generated cdc31 mutations chosen only for temperature sensitivity, but otherwise unbiased as to phenotype. Three phenotypes of the cdc31 mutants, temperature sensitivity, G2/M arrest, and cell lysis, were not well correlated, indicating that the mutations may differentially affect Cdc31p's interactions with other proteins. Alleles near the C-terminal region exhibited high G2/M arrest and genetic interactions with kar1-Delta17, suggesting that this region modulates an SPB-related function. Alleles causing high lysis and reduced Kic1p kinase activity mapped to the middle of the gene, suggesting disruption of a KIC1-like function and defects in activating Kic1p. A third region conferred temperature sensitivity without affecting cell lysis or G2/M arrest, suggesting that it defines a third function. Mutations in the C-terminal region were also defective for interaction with Kic1p. Mapping the alleles onto a predicted structure of Cdc31p, we have identified surfaces likely to be important for interacting with both Kar1p and Kic1p.

Full Text

The Full Text of this article is available as a PDF (677.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams I. R., Kilmartin J. V. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol. 1999 May 17;145(4):809–823. doi: 10.1083/jcb.145.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balczon R. The centrosome in animal cells and its functional homologs in plant and yeast cells. Int Rev Cytol. 1996;169:25–82. doi: 10.1016/s0074-7696(08)61984-1. [DOI] [PubMed] [Google Scholar]
  3. Baron A. T., Salisbury J. L. Identification and localization of a novel, cytoskeletal, centrosome-associated protein in PtK2 cells. J Cell Biol. 1988 Dec;107(6 Pt 2):2669–2678. doi: 10.1083/jcb.107.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baum P., Furlong C., Byers B. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5512–5516. doi: 10.1073/pnas.83.15.5512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhattacharya D., Steinkötter J., Melkonian M. Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants. Plant Mol Biol. 1993 Dec;23(6):1243–1254. doi: 10.1007/BF00042357. [DOI] [PubMed] [Google Scholar]
  6. Biggins S., Rose M. D. Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J Cell Biol. 1994 May;125(4):843–852. doi: 10.1083/jcb.125.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blackman L. M., Harper J. D., Overall R. L. Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol. 1999 May;78(5):297–304. doi: 10.1016/S0171-9335(99)80063-6. [DOI] [PubMed] [Google Scholar]
  8. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  9. Byers B., Goetsch L. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 1974;38:123–131. doi: 10.1101/sqb.1974.038.01.016. [DOI] [PubMed] [Google Scholar]
  10. Davis T. N., Urdea M. S., Masiarz F. R., Thorner J. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 1986 Nov 7;47(3):423–431. doi: 10.1016/0092-8674(86)90599-4. [DOI] [PubMed] [Google Scholar]
  11. Erdeniz N., Mortensen U. H., Rothstein R. Cloning-free PCR-based allele replacement methods. Genome Res. 1997 Dec;7(12):1174–1183. doi: 10.1101/gr.7.12.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  13. Geier B. M., Wiech H., Schiebel E. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p. J Biol Chem. 1996 Nov 8;271(45):28366–28374. doi: 10.1074/jbc.271.45.28366. [DOI] [PubMed] [Google Scholar]
  14. Hart P. E., Glantz J. N., Orth J. D., Poynter G. M., Salisbury J. L. Testis-specific murine centrin, Cetn1: genomic characterization and evidence for retroposition of a gene encoding a centrosome protein. Genomics. 1999 Sep 1;60(2):111–120. doi: 10.1006/geno.1999.5880. [DOI] [PubMed] [Google Scholar]
  15. Hartwell L. H. Saccharomyces cerevisiae cell cycle. Bacteriol Rev. 1974 Jun;38(2):164–198. doi: 10.1128/br.38.2.164-198.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Head J. F. A better grip on calmodulin. Curr Biol. 1992 Nov;2(11):609–611. doi: 10.1016/0960-9822(92)90175-a. [DOI] [PubMed] [Google Scholar]
  17. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  18. James P., Halladay J., Craig E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuboniwa H., Tjandra N., Grzesiek S., Ren H., Klee C. B., Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol. 1995 Sep;2(9):768–776. doi: 10.1038/nsb0995-768. [DOI] [PubMed] [Google Scholar]
  20. Lauzé E., Stoelcker B., Luca F. C., Weiss E., Schutz A. R., Winey M. Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J. 1995 Apr 18;14(8):1655–1663. doi: 10.1002/j.1460-2075.1995.tb07154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LeDizet M., Beck J. C., Finkbeiner W. E. Differential regulation of centrin genes during ciliogenesis in human tracheal epithelial cells. Am J Physiol. 1998 Dec;275(6 Pt 1):L1145–L1156. doi: 10.1152/ajplung.1998.275.6.L1145. [DOI] [PubMed] [Google Scholar]
  22. Levy Y. Y., Lai E. Y., Remillard S. P., Heintzelman M. B., Fulton C. Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil Cytoskeleton. 1996;33(4):298–323. doi: 10.1002/(SICI)1097-0169(1996)33:4<298::AID-CM6>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  23. Lussier M., White A. M., Sheraton J., di Paolo T., Treadwell J., Southard S. B., Horenstein C. I., Chen-Weiner J., Ram A. F., Kapteyn J. C. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):435–450. doi: 10.1093/genetics/147.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  25. Middendorp S., Küntziger T., Abraham Y., Holmes S., Bordes N., Paintrand M., Paoletti A., Bornens M. A role for centrin 3 in centrosome reproduction. J Cell Biol. 2000 Feb 7;148(3):405–416. doi: 10.1083/jcb.148.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Millard P. J., Roth B. L., Thi H. P., Yue S. T., Haugland R. P. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol. 1997 Jul;63(7):2897–2905. doi: 10.1128/aem.63.7.2897-2905.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mitchell D. A., Marshall T. K., Deschenes R. J. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast. 1993 Jul;9(7):715–722. doi: 10.1002/yea.320090705. [DOI] [PubMed] [Google Scholar]
  28. Moncrief N. D., Kretsinger R. H., Goodman M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol. 1990 Jun;30(6):522–562. doi: 10.1007/BF02101108. [DOI] [PubMed] [Google Scholar]
  29. Muhlrad D., Hunter R., Parker R. A rapid method for localized mutagenesis of yeast genes. Yeast. 1992 Feb;8(2):79–82. doi: 10.1002/yea.320080202. [DOI] [PubMed] [Google Scholar]
  30. Ohya Y., Botstein D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science. 1994 Feb 18;263(5149):963–966. doi: 10.1126/science.8310294. [DOI] [PubMed] [Google Scholar]
  31. Ohya Y., Botstein D. Structure-based systematic isolation of conditional-lethal mutations in the single yeast calmodulin gene. Genetics. 1994 Dec;138(4):1041–1054. doi: 10.1093/genetics/138.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Okano H., Cyert M. S., Ohya Y. Importance of phenylalanine residues of yeast calmodulin for target binding and activation. J Biol Chem. 1998 Oct 9;273(41):26375–26382. doi: 10.1074/jbc.273.41.26375. [DOI] [PubMed] [Google Scholar]
  33. Paoletti A., Moudjou M., Paintrand M., Salisbury J. L., Bornens M. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci. 1996 Dec;109(Pt 13):3089–3102. doi: 10.1242/jcs.109.13.3089. [DOI] [PubMed] [Google Scholar]
  34. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  35. Persechini A., Kretsinger R. H. Toward a model of the calmodulin-myosin light-chain kinase complex: implications for calmodulin function. J Cardiovasc Pharmacol. 1988;12 (Suppl 5):S1–12. [PubMed] [Google Scholar]
  36. Reinsch S., Gönczy P. Mechanisms of nuclear positioning. J Cell Sci. 1998 Aug;111(Pt 16):2283–2295. doi: 10.1242/jcs.111.16.2283. [DOI] [PubMed] [Google Scholar]
  37. Rout M. P., Kilmartin J. V. Components of the yeast spindle and spindle pole body. J Cell Biol. 1990 Nov;111(5 Pt 1):1913–1927. doi: 10.1083/jcb.111.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Salisbury J. L., Whitehead C. M., Lingle W. L., Barrett S. L. Centrosomes and cancer. Biol Cell. 1999 Jul;91(6):451–460. [PubMed] [Google Scholar]
  39. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  40. Spang A., Courtney I., Fackler U., Matzner M., Schiebel E. The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J Cell Biol. 1993 Oct;123(2):405–416. doi: 10.1083/jcb.123.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spang A., Courtney I., Grein K., Matzner M., Schiebel E. The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body. J Cell Biol. 1995 Mar;128(5):863–877. doi: 10.1083/jcb.128.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stoppin-Mellet V., Canaday J., Lambert A. M. Characterization of microsome-associated tobacco BY-2 centrins. Eur J Cell Biol. 1999 Nov;78(11):842–848. doi: 10.1016/S0171-9335(99)80035-1. [DOI] [PubMed] [Google Scholar]
  43. Sullivan D. S., Biggins S., Rose M. D. The yeast centrin, cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity. J Cell Biol. 1998 Nov 2;143(3):751–765. doi: 10.1083/jcb.143.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taillon B. E., Adler S. A., Suhan J. P., Jarvik J. W. Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas. J Cell Biol. 1992 Dec;119(6):1613–1624. doi: 10.1083/jcb.119.6.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vallen E. A., Hiller M. A., Scherson T. Y., Rose M. D. Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion. J Cell Biol. 1992 Jun;117(6):1277–1287. doi: 10.1083/jcb.117.6.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vallen E. A., Ho W., Winey M., Rose M. D. Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae. Genetics. 1994 Jun;137(2):407–422. doi: 10.1093/genetics/137.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wells W. A. The spindle-assembly checkpoint: aiming for a perfect mitosis, every time. Trends Cell Biol. 1996 Jun;6(6):228–234. doi: 10.1016/0962-8924(96)10018-0. [DOI] [PubMed] [Google Scholar]
  48. Wolfrum U. Centrin in the photoreceptor cells of mammalian retinae. Cell Motil Cytoskeleton. 1995;32(1):55–64. doi: 10.1002/cm.970320107. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES