Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):727–742. doi: 10.1093/genetics/157.2.727

Dual-tagging gene trap of novel genes in Drosophila melanogaster.

T Lukacsovich 1, Z Asztalos 1, W Awano 1, K Baba 1, S Kondo 1, S Niwa 1, D Yamamoto 1
PMCID: PMC1461519  PMID: 11156992

Abstract

A gene-trap system is established for Drosophila. Unlike the conventional enhancer-trap system, the gene-trap system allows the recovery only of fly lines whose genes are inactivated by a P-element insertion, i.e., mutants. In the gene-trap system, the reporter gene expression reflects precisely the spatial and temporal expression pattern of the trapped gene. Flies in which gene trap occurred are identified by a two-step screening process using two independent markers, mini-w and Gal4, each indicating the integration of the vector downstream of the promoter of a gene (dual tagging). mini-w has its own promoter but lacks a polyadenylation signal. Therefore, mini-w mRNA is transcribed from its own promoter regardless of the vector integration site in the genome. However, the eyes of flies are not orange or red unless the vector is incorporated into a gene enabling mini-w to be spliced to a downstream exon of the host gene and polyadenylated at the 3' end. The promoter-less Gal4 reporter is expressed as a fusion mRNA only when it is integrated downstream of the promoter of a host gene. The exons of trapped genes can be readily cloned by vectorette RT-PCR, followed by RACE and PCR using cDNA libraries. Thus, the dual-tagging gene-trap system provides a means for (i) efficient mutagenesis, (ii) unequivocal identification of genes responsible for mutant phenotypes, (iii) precise detection of expression patterns of trapped genes, and (iv) rapid cloning of trapped genes.

Full Text

The Full Text of this article is available as a PDF (659.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. J., Collick A., Jeffreys A. J. Use of vectorette and subvectorette PCR to isolate transgene flanking DNA. PCR Methods Appl. 1994 Oct;4(2):71–75. doi: 10.1101/gr.4.2.71. [DOI] [PubMed] [Google Scholar]
  2. Arnold C., Hodgson I. J. Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl. 1991 Aug;1(1):39–42. doi: 10.1101/gr.1.1.39. [DOI] [PubMed] [Google Scholar]
  3. Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
  4. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  5. Bolwig G. M., Del Vecchio M., Hannon G., Tully T. Molecular cloning of linotte in Drosophila: a novel gene that functions in adults during associative learning. Neuron. 1995 Oct;15(4):829–842. doi: 10.1016/0896-6273(95)90174-4. [DOI] [PubMed] [Google Scholar]
  6. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  7. Brandes C., Plautz J. D., Stanewsky R., Jamison C. F., Straume M., Wood K. V., Kay S. A., Hall J. C. Novel features of drosophila period Transcription revealed by real-time luciferase reporting. Neuron. 1996 Apr;16(4):687–692. doi: 10.1016/s0896-6273(00)80088-4. [DOI] [PubMed] [Google Scholar]
  8. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  9. Chu K., Niu X., Williams L. T. A Fas-associated protein factor, FAF1, potentiates Fas-mediated apoptosis. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11894–11898. doi: 10.1073/pnas.92.25.11894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooley L., Kelley R., Spradling A. Insertional mutagenesis of the Drosophila genome with single P elements. Science. 1988 Mar 4;239(4844):1121–1128. doi: 10.1126/science.2830671. [DOI] [PubMed] [Google Scholar]
  11. Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
  12. Fujita S. C., Zipursky S. L., Benzer S., Ferrús A., Shotwell S. L. Monoclonal antibodies against the Drosophila nervous system. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7929–7933. doi: 10.1073/pnas.79.24.7929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Juni N., Awasaki T., Yoshida K., Hori S. H. The Om (1E) mutation in Drosophila ananassae causes compound eye overgrowth due to tom retrotransposon-driven overexpression of a novel gene. Genetics. 1996 Jul;143(3):1257–1270. doi: 10.1093/genetics/143.3.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lai Z. C., Rubin G. M. Negative control of photoreceptor development in Drosophila by the product of the yan gene, an ETS domain protein. Cell. 1992 Aug 21;70(4):609–620. doi: 10.1016/0092-8674(92)90430-k. [DOI] [PubMed] [Google Scholar]
  15. Le S. Y., Shapiro B. A., Chen J. H., Nussinov R., Maizel J. V. RNA pseudoknots downstream of the frameshift sites of retroviruses. Genet Anal Tech Appl. 1991 Nov;8(7):191–205. doi: 10.1016/1050-3862(91)90013-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsuo T., Takahashi K., Kondo S., Kaibuchi K., Yamamoto D. Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye. Development. 1997 Jul;124(14):2671–2680. doi: 10.1242/dev.124.14.2671. [DOI] [PubMed] [Google Scholar]
  17. Miyamoto H., Nihonmatsu I., Kondo S., Ueda R., Togashi S., Hirata K., Ikegami Y., Yamamoto D. canoe encodes a novel protein containing a GLGF/DHR motif and functions with Notch and scabrous in common developmental pathways in Drosophila. Genes Dev. 1995 Mar 1;9(5):612–625. doi: 10.1101/gad.9.5.612. [DOI] [PubMed] [Google Scholar]
  18. Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Kane C. J., Gehring W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9123–9127. doi: 10.1073/pnas.84.24.9123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rebay I., Rubin G. M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell. 1995 Jun 16;81(6):857–866. doi: 10.1016/0092-8674(95)90006-3. [DOI] [PubMed] [Google Scholar]
  21. Rogge R., Green P. J., Urano J., Horn-Saban S., Mlodzik M., Shilo B. Z., Hartenstein V., Banerjee U. The role of yan in mediating the choice between cell division and differentiation. Development. 1995 Dec;121(12):3947–3958. doi: 10.1242/dev.121.12.3947. [DOI] [PubMed] [Google Scholar]
  22. Rørth P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12418–12422. doi: 10.1073/pnas.93.22.12418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rørth P., Szabo K., Bailey A., Laverty T., Rehm J., Rubin G. M., Weigmann K., Milán M., Benes V., Ansorge W. Systematic gain-of-function genetics in Drosophila. Development. 1998 Mar;125(6):1049–1057. doi: 10.1242/dev.125.6.1049. [DOI] [PubMed] [Google Scholar]
  24. Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tei H., Nihonmatsu I., Yokokura T., Ueda R., Sano Y., Okuda T., Sato K., Hirata K., Fujita S. C., Yamamoto D. pokkuri, a Drosophila gene encoding an E-26-specific (Ets) domain protein, prevents overproduction of the R7 photoreceptor. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6856–6860. doi: 10.1073/pnas.89.15.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yeh E., Gustafson K., Boulianne G. L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7036–7040. doi: 10.1073/pnas.92.15.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zambrowicz B. P., Friedrich G. A., Buxton E. C., Lilleberg S. L., Person C., Sands A. T. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature. 1998 Apr 9;392(6676):608–611. doi: 10.1038/33423. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES