Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):743–750. doi: 10.1093/genetics/157.2.743

Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa.

C Taylor 1, Y T Touré 1, J Carnahan 1, D E Norris 1, G Dolo 1, S F Traoré 1, F E Edillo 1, G C Lanzaro 1
PMCID: PMC1461521  PMID: 11156993

Abstract

The population structure of the Anopheles gambiae complex is unusual, with several sibling species often occupying a single area and, in one of these species, An. gambiae sensu stricto, as many as three "chromosomal forms" occurring together. The chromosomal forms are thought to be intermediate between populations and species, distinguishable by patterns of chromosome gene arrangements. The extent of reproductive isolation among these forms has been debated. To better characterize this structure we measured effective population size, N(e), and migration rates, m, or their product by both direct and indirect means. Gene flow among villages within each chromosomal form was found to be large (N(e)m > 40), was intermediate between chromosomal forms (N(e)m approximately 3-30), and was low between species (N(e)m approximately 0.17-1.3). A recently developed means for distinguishing among certain of the forms using PCR indicated rates of gene flow consistent with those observed using the other genetic markers.

Full Text

The Full Text of this article is available as a PDF (207.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins F. H. Prospects for malaria control through the genetic manipulation of its vectors. Parasitol Today. 1994 Oct;10(10):370–371. doi: 10.1016/0169-4758(94)90221-6. [DOI] [PubMed] [Google Scholar]
  2. Colson I., Goldstein D. B. Evidence for complex mutations at microsatellite loci in Drosophila. Genetics. 1999 Jun;152(2):617–627. doi: 10.1093/genetics/152.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coluzzi M., Sabatini A., Petrarca V., Di Deco M. A. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73(5):483–497. doi: 10.1016/0035-9203(79)90036-1. [DOI] [PubMed] [Google Scholar]
  4. Coluzzi M. The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia. 1999 Sep;41(1-3):277–283. [PubMed] [Google Scholar]
  5. Costantini C., Li S. G., Della Torre A., Sagnon N., Coluzzi M., Taylor C. E. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a west African Sudan savanna village. Med Vet Entomol. 1996 Jul;10(3):203–219. doi: 10.1111/j.1365-2915.1996.tb00733.x. [DOI] [PubMed] [Google Scholar]
  6. Dieckmann U., Doebeli M. On the origin of species by sympatric speciation. Nature. 1999 Jul 22;400(6742):354–357. doi: 10.1038/22521. [DOI] [PubMed] [Google Scholar]
  7. Favia G., della Torre A., Bagayoko M., Lanfrancotti A., Sagnon N., Touré Y. T., Coluzzi M. Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol. 1997 Nov;6(4):377–383. doi: 10.1046/j.1365-2583.1997.00189.x. [DOI] [PubMed] [Google Scholar]
  8. Hunt R. H. A cytological technique for the study of Anopheles gambiae complex. Parassitologia. 1973 Apr-Aug;15(1):137–139. [PubMed] [Google Scholar]
  9. Kamau L., Lehmann T., Hawley W. A., Orago A. S., Collins F. H. Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo Bay, western Kenya: a comparison with Kilifi in coastal Kenya. Am J Trop Med Hyg. 1998 Jan;58(1):64–69. doi: 10.4269/ajtmh.1998.58.64. [DOI] [PubMed] [Google Scholar]
  10. Kondrashov A. S., Kondrashov F. A. Interactions among quantitative traits in the course of sympatric speciation. Nature. 1999 Jul 22;400(6742):351–354. doi: 10.1038/22514. [DOI] [PubMed] [Google Scholar]
  11. Lanzaro G. C., Touré Y. T., Carnahan J., Zheng L., Dolo G., Traoré S., Petrarca V., Vernick K. D., Taylor C. E. Complexities in the genetic structure of Anopheles gambiae populations in west Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14260–14265. doi: 10.1073/pnas.95.24.14260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nauta M. J., Weissing F. J. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics. 1996 Jun;143(2):1021–1032. doi: 10.1093/genetics/143.2.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Persiani A., Di Deco M. A., Petrangeli G. Osservazioni di laboratorio su polimorfismi da inversione originati da incrocitra popolazioni diverse di Anopheles gambiae s.s. Ann Ist Super Sanita. 1986;22(1):221–223. [PubMed] [Google Scholar]
  14. Petrarca V., Beier J. C. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. Am J Trop Med Hyg. 1992 Feb;46(2):229–237. doi: 10.4269/ajtmh.1992.46.229. [DOI] [PubMed] [Google Scholar]
  15. Powell J. R., Petrarca V., della Torre A., Caccone A., Coluzzi M. Population structure, speciation, and introgression in the Anopheles gambiae complex. Parassitologia. 1999 Sep;41(1-3):101–113. [PubMed] [Google Scholar]
  16. Schug M. D., Hutter C. M., Noor M. A., Aquadro C. F. Mutation and evolution of microsatellites in Drosophila melanogaster. Genetica. 1998;102-103(1-6):359–367. [PubMed] [Google Scholar]
  17. Scott J. A., Brogdon W. G., Collins F. H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993 Oct;49(4):520–529. doi: 10.4269/ajtmh.1993.49.520. [DOI] [PubMed] [Google Scholar]
  18. Simard F., Fontenille D., Lehmann T., Girod R., Brutus L., Gopaul R., Dournon C., Collins F. H. High amounts of genetic differentiation between populations of the malaria vector Anopheles arabiensis from West Africa and eastern outer islands. Am J Trop Med Hyg. 1999 Jun;60(6):1000–1009. doi: 10.4269/ajtmh.1999.60.1000. [DOI] [PubMed] [Google Scholar]
  19. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor C. E., Toure Y. T., Coluzzi M., Petrarca V. Effective population size and persistence of Anopheles arabiensis during the dry season in west Africa. Med Vet Entomol. 1993 Oct;7(4):351–357. doi: 10.1111/j.1365-2915.1993.tb00704.x. [DOI] [PubMed] [Google Scholar]
  21. Touré Y. T., Dolo G., Petrarca V., Traoré S. F., Bouaré M., Dao A., Carnahan J., Taylor C. E. Mark-release-recapture experiments with Anopheles gambiae s.l. in Banambani Village, Mali, to determine population size and structure. Med Vet Entomol. 1998 Jan;12(1):74–83. doi: 10.1046/j.1365-2915.1998.00071.x. [DOI] [PubMed] [Google Scholar]
  22. Touré Y. T., Petrarca V., Traoré S. F., Coulibaly A., Maiga H. M., Sankaré O., Sow M., Di Deco M. A., Coluzzi M. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998 Dec;40(4):477–511. [PubMed] [Google Scholar]
  23. Touré Y. T., Petrarca V., Traoré S. F., Coulibaly A., Maïga H. M., Sankaré O., Sow M., Di Deco M. A., Coluzzi M. Ecological genetic studies in the chromosomal form Mopti of Anopheles gambiae s.str. in Mali, west Africa. Genetica. 1994;94(2-3):213–223. doi: 10.1007/BF01443435. [DOI] [PubMed] [Google Scholar]
  24. Tregenza T., Butlin R. K. Speciation without isolation. Nature. 1999 Jul 22;400(6742):311–312. doi: 10.1038/22419. [DOI] [PubMed] [Google Scholar]
  25. della Torre A., Merzagora L., Powell J. R., Coluzzi M. Selective introgression of paracentric inversions between two sibling species of the Anopheles gambiae complex. Genetics. 1997 May;146(1):239–244. doi: 10.1093/genetics/146.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES