Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):611–620. doi: 10.1093/genetics/157.2.611

ND9P, a novel protein with armadillo-like repeats involved in exocytosis: physiological studies using allelic mutants in paramecium.

M Froissard 1, A M Keller 1, J Cohen 1
PMCID: PMC1461539  PMID: 11156983

Abstract

In Paramecium, a number of mutants affected in the exocytotic membrane fusion step of the regulated secretory pathway have been obtained. Here, we report the isolation of one of the corresponding genes, ND9, previously suspected to encode a soluble protein interacting with both plasma and trichocyst membranes. Nd9p is a novel polypeptide that contains C-terminal Armadillo-like repeats. Point mutations were found in the first N-terminal quarter of the molecule and in the last putative Armadillo repeat, respectively, for the two thermosensitive mutants, nd9-1 and nd9-2. The different behaviors of these mutants in recovery experiments upon temperature shifts suggest that the N-terminal domain of the molecule may be involved in membrane binding activity, whereas the C-terminal domain is a candidate for protein-protein interactions. The nonsense nd9-3 mutation that produces a short N-terminal peptide has a dominant negative effect on the nd9-1 allele. We show here that, when overexpressed, the dominant negative effect can be produced even on the wild-type allele, suggesting competition for a common target. We suggest that Nd9p could act, like some SNARE proteins, at the membrane-cytosol interface to promote membrane fusion.

Full Text

The Full Text of this article is available as a PDF (365.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apweiler R. Protein sequence databases. Adv Protein Chem. 2000;54:31–71. doi: 10.1016/s0065-3233(00)54002-9. [DOI] [PubMed] [Google Scholar]
  3. Bateman A., Birney E., Durbin R., Eddy S. R., Howe K. L., Sonnhammer E. L. The Pfam protein families database. Nucleic Acids Res. 2000 Jan 1;28(1):263–266. doi: 10.1093/nar/28.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beisson J., Cohen J., Lefort-Tran M., Pouphile M., Rossignol M. Control of membrane fusion in exocytosis. Physiological studies on a Paramecium mutant blocked in the final step of the trichocyst extrusion process. J Cell Biol. 1980 May;85(2):213–227. doi: 10.1083/jcb.85.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beisson J., Lefort-Tran M., Pouphile M., Rossignol M., Satir B. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J Cell Biol. 1976 Apr;69(1):126–143. doi: 10.1083/jcb.69.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonnemain H., Gulik-Krzywicki T., Grandchamp C., Cohen J. Interactions between genes involved in exocytotic membrane fusion in paramecium. Genetics. 1992 Mar;130(3):461–470. doi: 10.1093/genetics/130.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen J., Beisson J. Genetic analysis of the relationships between the cell surface and the nuclei in Paramecium tetraurella. Genetics. 1980 Aug;95(4):797–818. doi: 10.1093/genetics/95.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duharcourt S., Butler A., Meyer E. Epigenetic self-regulation of developmental excision of an internal eliminated sequence on Paramecium tetraurelia. Genes Dev. 1995 Aug 15;9(16):2065–2077. doi: 10.1101/gad.9.16.2065. [DOI] [PubMed] [Google Scholar]
  11. Fleckenstein D., Rohde M., Klionsky D. J., Rüdiger M. Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin alpha is associated with the yeast vacuole membrane. J Cell Sci. 1998 Oct;111(Pt 20):3109–3118. doi: 10.1242/jcs.111.20.3109. [DOI] [PubMed] [Google Scholar]
  12. Gerst J. E. SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci. 1999 May;55(5):707–734. doi: 10.1007/s000180050328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haynes W. J., Ling K. Y., Saimi Y., Kung C. Toward cloning genes by complementation in Paramecium. J Neurogenet. 1996 Dec;11(1-2):81–98. doi: 10.3109/01677069609107064. [DOI] [PubMed] [Google Scholar]
  14. Huber A. H., Nelson W. J., Weis W. I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997 Sep 5;90(5):871–882. doi: 10.1016/s0092-8674(00)80352-9. [DOI] [PubMed] [Google Scholar]
  15. Inokoshi J., Tomoda H., Hashimoto H., Watanabe A., Takeshima H., Omura S. Cerulenin-resistant mutants of Saccharomyces cerevisiae with an altered fatty acid synthase gene. Mol Gen Genet. 1994 Jul 8;244(1):90–96. doi: 10.1007/BF00280191. [DOI] [PubMed] [Google Scholar]
  16. Johannes L., Galli T., Ludger J. Exocytosis: SNAREs drum up! Eur J Neurosci. 1998 Feb;10(2):415–422. doi: 10.1046/j.1460-9568.1998.00081.x. [DOI] [PubMed] [Google Scholar]
  17. Kaibuchi K., Mizuno T., Fujioka H., Yamamoto T., Kishi K., Fukumoto Y., Hori Y., Takai Y. Molecular cloning of the cDNA for stimulatory GDP/GTP exchange protein for smg p21s (ras p21-like small GTP-binding proteins) and characterization of stimulatory GDP/GTP exchange protein. Mol Cell Biol. 1991 May;11(5):2873–2880. doi: 10.1128/mcb.11.5.2873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lefort-Tran M., Aufderheide K., Pouphile M., Rossignol M., Beisson J. Control of exocytotic processes: cytological and physiological studies of trichocyst mutants in Paramecium tetraurelia. J Cell Biol. 1981 Feb;88(2):301–311. doi: 10.1083/jcb.88.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lumpert C. J., Kersken H., Plattner H. Cell surface complexes ('cortices') isolated from Paramecium tetraurelia cells as a model system for analysing exocytosis in vitro in conjunction with microinjection studies. Biochem J. 1990 Aug 1;269(3):639–645. doi: 10.1042/bj2690639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lustgarten V., Gerst J. E. Yeast VSM1 encodes a v-SNARE binding protein that may act as a negative regulator of constitutive exocytosis. Mol Cell Biol. 1999 Jun;19(6):4480–4494. doi: 10.1128/mcb.19.6.4480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marck C. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 1988 Mar 11;16(5):1829–1836. doi: 10.1093/nar/16.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martinez J. P., Elorza M. V., Gozalbo D., Sentandreu R. Regulation of alpha-galactosidase synthesis in Saccharomyces cerevisiae and effect of cerulenin on the secretion of this enzyme. Biochim Biophys Acta. 1982 May 27;716(2):158–168. doi: 10.1016/0304-4165(82)90264-1. [DOI] [PubMed] [Google Scholar]
  23. Moche M., Schneider G., Edwards P., Dehesh K., Lindqvist Y. Structure of the complex between the antibiotic cerulenin and its target, beta-ketoacyl-acyl carrier protein synthase. J Biol Chem. 1999 Mar 5;274(10):6031–6034. doi: 10.1074/jbc.274.10.6031. [DOI] [PubMed] [Google Scholar]
  24. Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev. 1976 Sep;40(3):681–697. doi: 10.1128/br.40.3.681-697.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pan X., Goldfarb D. S. YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J Cell Sci. 1998 Aug;111(Pt 15):2137–2147. doi: 10.1242/jcs.111.15.2137. [DOI] [PubMed] [Google Scholar]
  26. Peifer M., Berg S., Reynolds A. B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell. 1994 Mar 11;76(5):789–791. doi: 10.1016/0092-8674(94)90353-0. [DOI] [PubMed] [Google Scholar]
  27. Pfeffer S. R. Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol. 1999 May;1(1):E17–E22. doi: 10.1038/8967. [DOI] [PubMed] [Google Scholar]
  28. Plattner H., Matt H., Kersken H., Haacke B., Stürzl R. Synchronous exocytosis in Paramecium cells. I. A novel approach. Exp Cell Res. 1984 Mar;151(1):6–13. doi: 10.1016/0014-4827(84)90350-1. [DOI] [PubMed] [Google Scholar]
  29. Riggleman B., Wieschaus E., Schedl P. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev. 1989 Jan;3(1):96–113. doi: 10.1101/gad.3.1.96. [DOI] [PubMed] [Google Scholar]
  30. Rizo J., Südhof T. C. Mechanics of membrane fusion. Nat Struct Biol. 1998 Oct;5(10):839–842. doi: 10.1038/2280. [DOI] [PubMed] [Google Scholar]
  31. Ruiz F., Vayssié L., Klotz C., Sperling L., Madeddu L. Homology-dependent gene silencing in Paramecium. Mol Biol Cell. 1998 Apr;9(4):931–943. doi: 10.1091/mbc.9.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schultz J., Copley R. R., Doerks T., Ponting C. P., Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000 Jan 1;28(1):231–234. doi: 10.1093/nar/28.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Skouri F., Cohen J. Genetic approach to regulated exocytosis using functional complementation in Paramecium: identification of the ND7 gene required for membrane fusion. Mol Biol Cell. 1997 Jun;8(6):1063–1071. doi: 10.1091/mbc.8.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
  35. TerBush D. R., Maurice T., Roth D., Novick P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 1996 Dec 2;15(23):6483–6494. [PMC free article] [PubMed] [Google Scholar]
  36. Vayssié L., Skouri F., Sperling L., Cohen J. Molecular genetics of regulated secretion in paramecium. Biochimie. 2000 Apr;82(4):269–288. doi: 10.1016/s0300-9084(00)00201-7. [DOI] [PubMed] [Google Scholar]
  37. Wang Y. X., Catlett N. L., Weisman L. S. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J Cell Biol. 1998 Mar 9;140(5):1063–1074. doi: 10.1083/jcb.140.5.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weber T., Zemelman B. V., McNew J. A., Westermann B., Gmachl M., Parlati F., Söllner T. H., Rothman J. E. SNAREpins: minimal machinery for membrane fusion. Cell. 1998 Mar 20;92(6):759–772. doi: 10.1016/s0092-8674(00)81404-x. [DOI] [PubMed] [Google Scholar]
  39. Yamamoto T., Kaibuchi K., Mizuno T., Hiroyoshi M., Shirataki H., Takai Y. Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. J Biol Chem. 1990 Sep 25;265(27):16626–16634. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES