Abstract
The Arabidopsis transposon Tag1 has an unusual subterminal structure containing four sets of dissimilar repeats: one set near the 5' end and three near the 3' end. To determine sequence requirements for efficient and regulated transposition, deletion derivatives of Tag1 were tested in Arabidopsis plants. These tests showed that a 98-bp 5' fragment containing the 22-bp inverted repeat and four copies of the AAACCX (X = C, A, G) 5' subterminal repeat is sufficient for transposition while a 52-bp 5' fragment containing only one copy of the subterminal repeat is not. At the 3' end, a 109-bp fragment containing four copies of the most 3' repeat TGACCC, but not a 55-bp fragment, which has no copies of the subterminal repeats, is sufficient for transposition. The 5' and 3' end fragments are not functionally interchangeable and require an internal spacer DNA of minimal length between 238 and 325 bp to be active. Elements with these minimal requirements show transposition rates and developmental control of excision that are comparable to the autonomous Tag1 element. Last, a DNA-binding activity that interacts with the 3' 109-bp fragment but not the 5' 98-bp fragment of Tag1 was found in nuclear extracts of Arabidopsis plants devoid of Tag1.
Full Text
The Full Text of this article is available as a PDF (417.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adé J., Belzile F. J. Hairpin elements, the first family of foldback transposons (FTs) in Arabidopsis thaliana. Plant J. 1999 Sep;19(5):591–597. doi: 10.1046/j.1365-313x.1999.00567.x. [DOI] [PubMed] [Google Scholar]
- Becker H. A., Kunze R. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. Mol Gen Genet. 1996 Jun 24;251(4):428–435. doi: 10.1007/BF02172371. [DOI] [PubMed] [Google Scholar]
- Becker H. A., Kunze R. Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Mol Gen Genet. 1997 Apr 16;254(3):219–230. doi: 10.1007/s004380050410. [DOI] [PubMed] [Google Scholar]
- Benito M. I., Walbot V. Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol. 1997 Sep;17(9):5165–5175. doi: 10.1128/mcb.17.9.5165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhatt A. M., Lister C., Crawford N., Dean C. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell. 1998 Mar;10(3):427–434. doi: 10.1105/tpc.10.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colloms S. D., van Luenen H. G., Plasterk R. H. DNA binding activities of the Caenorhabditis elegans Tc3 transposase. Nucleic Acids Res. 1994 Dec 25;22(25):5548–5554. doi: 10.1093/nar/22.25.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Copenhaver G. P., Nickel K., Kuromori T., Benito M. I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L. D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999 Dec 24;286(5449):2468–2474. doi: 10.1126/science.286.5449.2468. [DOI] [PubMed] [Google Scholar]
- Dooner H. K., English J., Ralston E. J. The frequency of transposition of the maize element Activator is not affected by an adjacent deletion. Mol Gen Genet. 1988 Mar;211(3):485–491. doi: 10.1007/BF00425705. [DOI] [PubMed] [Google Scholar]
- Fedoroff N., Schläppi M., Raina R. Epigenetic regulation of the maize Spm transposon. Bioessays. 1995 Apr;17(4):291–297. doi: 10.1002/bies.950170405. [DOI] [PubMed] [Google Scholar]
- Frank M. J., Liu D., Tsay Y. F., Ustach C., Crawford N. M. Tag1 is an autonomous transposable element that shows somatic excision in both Arabidopsis and tobacco. Plant Cell. 1997 Oct;9(10):1745–1756. doi: 10.1105/tpc.9.10.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank M. J., Preuss D., Mack A., Kuhlmann T. C., Crawford N. M. The Arabidopsis transposable element Tag1 is widely distributed among Arabidopsis ecotypes. Mol Gen Genet. 1998 Feb;257(4):478–484. doi: 10.1007/pl00008622. [DOI] [PubMed] [Google Scholar]
- Gierl A., Lütticke S., Saedler H. TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J. 1988 Dec 20;7(13):4045–4053. doi: 10.1002/j.1460-2075.1988.tb03298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gierl A. The En/Spm transposable element of maize. Curr Top Microbiol Immunol. 1996;204:145–159. doi: 10.1007/978-3-642-79795-8_7. [DOI] [PubMed] [Google Scholar]
- Henk A. D., Warren R. F., Innes R. W. A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics. 1999 Apr;151(4):1581–1589. doi: 10.1093/genetics/151.4.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jefferson R. A. The GUS reporter gene system. Nature. 1989 Dec 14;342(6251):837–838. doi: 10.1038/342837a0. [DOI] [PubMed] [Google Scholar]
- Jones J. D., Carland F. M., Maliga P., Dooner H. K. Visual detection of transposition of the maize element activator (ac) in tobacco seedlings. Science. 1989 Apr 14;244(4901):204–207. doi: 10.1126/science.244.4901.204. [DOI] [PubMed] [Google Scholar]
- Kaufman P. D., Doll R. F., Rio D. C. Drosophila P element transposase recognizes internal P element DNA sequences. Cell. 1989 Oct 20;59(2):359–371. doi: 10.1016/0092-8674(89)90297-3. [DOI] [PubMed] [Google Scholar]
- Kunze R., Starlinger P. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 1989 Nov;8(11):3177–3185. doi: 10.1002/j.1460-2075.1989.tb08476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazo G. R., Stein P. A., Ludwig R. A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (N Y) 1991 Oct;9(10):963–967. doi: 10.1038/nbt1091-963. [DOI] [PubMed] [Google Scholar]
- Lee C. C., Beall E. L., Rio D. C. DNA binding by the KP repressor protein inhibits P-element transposase activity in vitro. EMBO J. 1998 Jul 15;17(14):4166–4174. doi: 10.1093/emboj/17.14.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. C., Mul Y. M., Rio D. C. The Drosophila P-element KP repressor protein dimerizes and interacts with multiple sites on P-element DNA. Mol Cell Biol. 1996 Oct;16(10):5616–5622. doi: 10.1128/mcb.16.10.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy A. A., Fridlender M., Rubin U. H., Sitrit Y. Binding of Nicotiana nuclear proteins to the subterminal regions of the Ac transposable element. Mol Gen Genet. 1996 Jun 24;251(4):436–441. doi: 10.1007/BF02172372. [DOI] [PubMed] [Google Scholar]
- Lin X., Kaul S., Rounsley S., Shea T. P., Benito M. I., Town C. D., Fujii C. Y., Mason T., Bowman C. L., Barnstead M. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. doi: 10.1038/45471. [DOI] [PubMed] [Google Scholar]
- Liu D., Crawford N. M. Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag1. Genetics. 1998 Jan;148(1):445–456. doi: 10.1093/genetics/148.1.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D., Crawford N. M. Characterization of the putative transposase mRNA of Tag1, which is ubiquitously expressed in Arabidopsis and can be induced by Agrobacterium-mediated transformation with dTag1 DNA. Genetics. 1998 Jun;149(2):693–701. doi: 10.1093/genetics/149.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D., Zhang S., Fauquet C., Crawford N. M. The Arabidopsis transposon Tag1 is active in rice, undergoing germinal transposition and restricted, late somatic excision. Mol Gen Genet. 1999 Oct;262(3):413–420. doi: 10.1007/s004380051100. [DOI] [PubMed] [Google Scholar]
- Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G., Pohl T., Düsterhöft A., Stiekema W., Entian K. D., Terryn N. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):769–777. doi: 10.1038/47134. [DOI] [PubMed] [Google Scholar]
- Raghothama K. G., Liu D., Nelson D. E., Hasegawa P. M., Bressan R. A. Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter. Plant Mol Biol. 1993 Dec;23(6):1117–1128. doi: 10.1007/BF00042346. [DOI] [PubMed] [Google Scholar]
- Trentmann S. M., Saedler H., Gierl A. The transposable element En/Spm-encoded TNPA protein contains a DNA binding and a dimerization domain. Mol Gen Genet. 1993 Apr;238(1-2):201–208. doi: 10.1007/BF00279548. [DOI] [PubMed] [Google Scholar]
- Tsugeki R., Kochieva E. Z., Fedoroff N. V. A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 1996 Sep;10(3):479–489. doi: 10.1046/j.1365-313x.1996.10030479.x. [DOI] [PubMed] [Google Scholar]
- Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vos J. C., Plasterk R. H. Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO J. 1994 Dec 15;13(24):6125–6132. doi: 10.1002/j.1460-2075.1994.tb06959.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voytas D. F., Ausubel F. M. A copia-like transposable element family in Arabidopsis thaliana. Nature. 1988 Nov 17;336(6196):242–244. doi: 10.1038/336242a0. [DOI] [PubMed] [Google Scholar]
- Voytas D. F., Konieczny A., Cummings M. P., Ausubel F. M. The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics. 1990 Nov;126(3):713–721. doi: 10.1093/genetics/126.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren W. D., Atkinson P. W., O'Brochta D. A. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res. 1994 Oct;64(2):87–97. doi: 10.1017/s0016672300032699. [DOI] [PubMed] [Google Scholar]
- Wright D. A., Voytas D. F. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics. 1998 Jun;149(2):703–715. doi: 10.1093/genetics/149.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Z. Y., Sundaresan V. Binding sites for maize nuclear proteins in the terminal inverted repeats of the Mu1 transposable element. Mol Gen Genet. 1991 Sep;229(1):17–26. doi: 10.1007/BF00264208. [DOI] [PubMed] [Google Scholar]