Abstract
Although the clinical aspects of Pneumocystis carinii pneumonia are well characterized, the basic biology of the causative organism is poorly understood. Most proposed life cycles of P. carinii include both asexual and sexual replicative cycles. The two most prominent morphological forms are a trophic form, thought to undergo asexual replication by binary fission, and a cystic form or ascus containing intracystic bodies or ascospores, the products of sexual replication. To facilitate the Pneumocystis genome project, a P. carinii f. sp. carinii genomic cosmid library and an additional lambda cDNA library were generated. A partial expressed sequence tag database, created as part of the genome project, revealed the transcription of meiosis-specific genes and other genes related to sexual reproduction. The ortholog of Ste3, an a-factor pheromone receptor, was cloned and genes surrounding the ste3 locus were examined. Clustered around the ste3 gene are genes encoding elements functional in the pheromone response signal transduction cascade of model fungal organisms. These include the Ste20 protein kinase, the Ste12 homoeodomain transcriptional regulator, a potential pheromone mating factor, and other DNA-binding proteins. The genomic organization of the ste3 locus bears significant similarity to that of the mating locus recently described in Cryptococcus neoformans. The P. carinii genome contains much of the genetic machinery necessary for pheromone responsiveness, and these data support the existence of a sexual replication cycle.
Full Text
The Full Text of this article is available as a PDF (395.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Casselton L. A., Olesnicky N. S. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev. 1998 Mar;62(1):55–70. doi: 10.1128/mmbr.62.1.55-70.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushion M. T. Genetic heterogeneity of rat-derived Pneumocystis. FEMS Immunol Med Microbiol. 1998 Sep;22(1-2):51–58. doi: 10.1111/j.1574-695X.1998.tb01186.x. [DOI] [PubMed] [Google Scholar]
- Cushion M. T. Taxonomy, genetic organization, and life cycle of Pneumocystis carinii. Semin Respir Infect. 1998 Dec;13(4):304–312. [PubMed] [Google Scholar]
- Cushion M. T., Zhang J., Kaselis M., Giuntoli D., Stringer S. L., Stringer J. R. Evidence for two genetic variants of Pneumocystis carinii coinfecting laboratory rats. J Clin Microbiol. 1993 May;31(5):1217–1223. doi: 10.1128/jcm.31.5.1217-1223.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolan J. W., Fields S. Cell-type-specific transcription in yeast. Biochim Biophys Acta. 1991 Feb 16;1088(2):155–169. doi: 10.1016/0167-4781(91)90051-m. [DOI] [PubMed] [Google Scholar]
- Edman J. C., Kovacs J. A., Masur H., Santi D. V., Elwood H. J., Sogin M. L. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature. 1988 Aug 11;334(6182):519–522. doi: 10.1038/334519a0. [DOI] [PubMed] [Google Scholar]
- Fowler T. J., DeSimone S. M., Mitton M. F., Kurjan J., Raper C. A. Multiple sex pheromones and receptors of a mushroom-producing fungus elicit mating in yeast. Mol Biol Cell. 1999 Aug;10(8):2559–2572. doi: 10.1091/mbc.10.8.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haber J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet. 1998;32:561–599. doi: 10.1146/annurev.genet.32.1.561. [DOI] [PubMed] [Google Scholar]
- Hong S. T., Steele P. E., Cushion M. T., Walzer P. D., Stringer S. L., Stringer J. R. Pneumocystis carinii karyotypes. J Clin Microbiol. 1990 Aug;28(8):1785–1795. doi: 10.1128/jcm.28.8.1785-1795.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneshiro E. S., Collins M. S., Cushion M. T. Inhibitors of sterol biosynthesis and amphotericin B reduce the viability of pneumocystis carinii f. sp. carinii. Antimicrob Agents Chemother. 2000 Jun;44(6):1630–1638. doi: 10.1128/aac.44.6.1630-1638.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karos M., Chang Y. C., McClelland C. M., Clarke D. L., Fu J., Wickes B. L., Kwon-Chung K. J. Mapping of the Cryptococcus neoformans MATalpha locus: presence of mating type-specific mitogen-activated protein kinase cascade homologs. J Bacteriol. 2000 Nov;182(21):6222–6227. doi: 10.1128/jb.182.21.6222-6227.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelkar H. S., Griffith J., Case M. E., Covert S. F., Hall R. D., Keith C. H., Oliver J. S., Orbach M. J., Sachs M. S., Wagner J. R. The Neurospora crassa genome: cosmid libraries sorted by chromosome. Genetics. 2001 Mar;157(3):979–990. doi: 10.1093/genetics/157.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirkman-Correia C., Stroke I. L., Fields S. Functional domains of the yeast STE12 protein, a pheromone-responsive transcriptional activator. Mol Cell Biol. 1993 Jun;13(6):3765–3772. doi: 10.1128/mcb.13.6.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kronstad J. W., Staben C. Mating type in filamentous fungi. Annu Rev Genet. 1997;31:245–276. doi: 10.1146/annurev.genet.31.1.245. [DOI] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Edman J. C., Wickes B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992 Feb;60(2):602–605. doi: 10.1128/iai.60.2.602-605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence J. G., Roth J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics. 1996 Aug;143(4):1843–1860. doi: 10.1093/genetics/143.4.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leberer E., Dignard D., Harcus D., Thomas D. Y., Whiteway M. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J. 1992 Dec;11(13):4815–4824. doi: 10.1002/j.1460-2075.1992.tb05587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leberer E., Harcus D., Broadbent I. D., Clark K. L., Dignard D., Ziegelbauer K., Schmidt A., Gow N. A., Brown A. J., Thomas D. Y. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13217–13222. doi: 10.1073/pnas.93.23.13217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linke M. J., Cushion M. T., Walzer P. D. Properties of the major antigens of rat and human Pneumocystis carinii. Infect Immun. 1989 May;57(5):1547–1555. doi: 10.1128/iai.57.5.1547-1555.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenz M. C., Pan X., Harashima T., Cardenas M. E., Xue Y., Hirsch J. P., Heitman J. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics. 2000 Feb;154(2):609–622. doi: 10.1093/genetics/154.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magee B. B., Magee P. T. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science. 2000 Jul 14;289(5477):310–313. doi: 10.1126/science.289.5477.310. [DOI] [PubMed] [Google Scholar]
- Marcus S., Polverino A., Chang E., Robbins D., Cobb M. H., Wigler M. H. Shk1, a homolog of the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases, is a component of a Ras/Cdc42 signaling module in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6180–6184. doi: 10.1073/pnas.92.13.6180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto Y., Yoshida Y. Sporogony in Pneumocystis carinii: synaptonemal complexes and meiotic nuclear divisions observed in precysts. J Protozool. 1984 Aug;31(3):420–428. doi: 10.1111/j.1550-7408.1984.tb02989.x. [DOI] [PubMed] [Google Scholar]
- O'Shea S. F., Chaure P. T., Halsall J. R., Olesnicky N. S., Leibbrandt A., Connerton I. F., Casselton L. A. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics. 1998 Mar;148(3):1081–1090. doi: 10.1093/genetics/148.3.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen W. C., Bobrowicz P., Ebbole D. J. Isolation of pheromone precursor genes of Magnaporthe grisea. Fungal Genet Biol. 1999 Jul-Aug;27(2-3):253–263. doi: 10.1006/fgbi.1999.1151. [DOI] [PubMed] [Google Scholar]
- Steyerberg E. W., Kievit J., de Mol Van Otterloo J. C., van Bockel J. H., Eijkemans M. J., Habbema J. D. Perioperative mortality of elective abdominal aortic aneurysm surgery. A clinical prediction rule based on literature and individual patient data. Arch Intern Med. 1995 Oct 9;155(18):1998–2004. [PubMed] [Google Scholar]
- Stringer J. R. Pneumocystis carinii: what is it, exactly? Clin Microbiol Rev. 1996 Oct;9(4):489–498. doi: 10.1128/cmr.9.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stringer S. L., Stringer J. R., Blase M. A., Walzer P. D., Cushion M. T. Pneumocystis carinii: sequence from ribosomal RNA implies a close relationship with fungi. Exp Parasitol. 1989 May;68(4):450–461. doi: 10.1016/0014-4894(89)90130-6. [DOI] [PubMed] [Google Scholar]
- Vaillancourt L. J., Raudaskoski M., Specht C. A., Raper C. A. Multiple genes encoding pheromones and a pheromone receptor define the B beta 1 mating-type specificity in Schizophyllum commune. Genetics. 1997 Jun;146(2):541–551. doi: 10.1093/genetics/146.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wada M., Nakamura Y. MSG gene cluster encoding major cell surface glycoproteins of rat Pneumocystis carinii. DNA Res. 1994;1(4):163–168. doi: 10.1093/dnares/1.4.163. [DOI] [PubMed] [Google Scholar]
- Wickes B. L., Edman U., Edman J. C. The Cryptococcus neoformans STE12alpha gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol Microbiol. 1997 Dec;26(5):951–960. doi: 10.1046/j.1365-2958.1997.6322001.x. [DOI] [PubMed] [Google Scholar]