Skip to main content
Genetics logoLink to Genetics
. 2001 Mar;157(3):1021–1043. doi: 10.1093/genetics/157.3.1021

Parallel computation of a maximum-likelihood estimator of a physical map.

S M Bhandarkar 1, S A Machaka 1, S S Shete 1, R N Kota 1
PMCID: PMC1461556  PMID: 11238392

Abstract

Reconstructing a physical map of a chromosome from a genomic library presents a central computational problem in genetics. Physical map reconstruction in the presence of errors is a problem of high computational complexity that provides the motivation for parallel computing. Parallelization strategies for a maximum-likelihood estimation-based approach to physical map reconstruction are presented. The estimation procedure entails a gradient descent search for determining the optimal spacings between probes for a given probe ordering. The optimal probe ordering is determined using a stochastic optimization algorithm such as simulated annealing or microcanonical annealing. A two-level parallelization strategy is proposed wherein the gradient descent search is parallelized at the lower level and the stochastic optimization algorithm is simultaneously parallelized at the higher level. Implementation and experimental results on a distributed-memory multiprocessor cluster running the parallel virtual machine (PVM) environment are presented using simulated and real hybridization data.

Full Text

The Full Text of this article is available as a PDF (503.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aign V., Schulte U., Hoheisel J. D. Hybridization-based mapping of Neurospora crassa linkage groups II and V. Genetics. 2001 Mar;157(3):1015–1020. doi: 10.1093/genetics/157.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnold J. Editorial. Fungal Genet Biol. 1997 Jun;21(3):254–257. doi: 10.1006/fgbi.1997.0997. [DOI] [PubMed] [Google Scholar]
  3. Arratia R., Lander E. S., Tavaré S., Waterman M. S. Genomic mapping by anchoring random clones: a mathematical analysis. Genomics. 1991 Dec;11(4):806–827. doi: 10.1016/0888-7543(91)90004-x. [DOI] [PubMed] [Google Scholar]
  4. Balding D. J. Design and analysis of chromosome physical mapping experiments. Philos Trans R Soc Lond B Biol Sci. 1994 Jun 29;344(1310):329–335. doi: 10.1098/rstb.1994.0071. [DOI] [PubMed] [Google Scholar]
  5. Bhandarkar S. M., Chirravuri S., Arnold J. PARODS--a study of parallel algorithms for ordering DNA sequences. Comput Appl Biosci. 1996 Aug;12(4):269–280. doi: 10.1093/bioinformatics/12.4.269. [DOI] [PubMed] [Google Scholar]
  6. Bhandarkar S. M., Chirravuri S., Arnold J. Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism. J Comput Biol. 1996 Winter;3(4):503–528. doi: 10.1089/cmb.1996.3.503. [DOI] [PubMed] [Google Scholar]
  7. Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christof T., Jünger M., Kececioglu J., Mutzel P., Reinelt G. A branch-and-cut approach to physical mapping of chromosomes by unique end-probes. J Comput Biol. 1997 Winter;4(4):433–447. doi: 10.1089/cmb.1997.4.433. [DOI] [PubMed] [Google Scholar]
  9. Cuticchia A. J., Arnold J., Timberlake W. E. ODS: ordering DNA sequences--a physical mapping algorithm based on simulated annealing. Comput Appl Biosci. 1993 Apr;9(2):215–219. doi: 10.1093/bioinformatics/9.2.215. [DOI] [PubMed] [Google Scholar]
  10. Cuticchia A. J., Arnold J., Timberlake W. E. The use of simulated annealing in chromosome reconstruction experiments based on binary scoring. Genetics. 1992 Oct;132(2):591–601. doi: 10.1093/genetics/132.2.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fu Y. X., Timberlake W. E., Arnold J. On the design of genome mapping experiments using short synthetic oligonucleotides. Biometrics. 1992 Jun;48(2):337–359. [PubMed] [Google Scholar]
  12. Greenberg D. S., Istrail S. Physical mapping by STS hybridization: algorithmic strategies and the challenge of software evaluation. J Comput Biol. 1995 Summer;2(2):219–273. doi: 10.1089/cmb.1995.2.219. [DOI] [PubMed] [Google Scholar]
  13. Hall D., Bhandarkar S. M., Wang J. ODS2: a multiplatform software application for creating integrated physical and genetic maps. Genetics. 2001 Mar;157(3):1045–1056. doi: 10.1093/genetics/157.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jain M., Myers E. W. Algorithms for computing and integrating physical maps using unique probes. J Comput Biol. 1997 Winter;4(4):449–466. doi: 10.1089/cmb.1997.4.449. [DOI] [PubMed] [Google Scholar]
  15. Kelkar H. S., Griffith J., Case M. E., Covert S. F., Hall R. D., Keith C. H., Oliver J. S., Orbach M. J., Sachs M. S., Wagner J. R. The Neurospora crassa genome: cosmid libraries sorted by chromosome. Genetics. 2001 Mar;157(3):979–990. doi: 10.1093/genetics/157.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lander E. S., Waterman M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics. 1988 Apr;2(3):231–239. doi: 10.1016/0888-7543(88)90007-9. [DOI] [PubMed] [Google Scholar]
  17. Mizukami T., Chang W. I., Garkavtsev I., Kaplan N., Lombardi D., Matsumoto T., Niwa O., Kounosu A., Yanagida M., Marr T. G. A 13 kb resolution cosmid map of the 14 Mb fission yeast genome by nonrandom sequence-tagged site mapping. Cell. 1993 Apr 9;73(1):121–132. doi: 10.1016/0092-8674(93)90165-m. [DOI] [PubMed] [Google Scholar]
  18. Mott R., Grigoriev A., Maier E., Hoheisel J., Lehrach H. Algorithms and software tools for ordering clone libraries: application to the mapping of the genome of Schizosaccharomyces pombe. Nucleic Acids Res. 1993 Apr 25;21(8):1965–1974. doi: 10.1093/nar/21.8.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prade R. A., Griffith J., Kochut K., Arnold J., Timberlake W. E. In vitro reconstruction of the Aspergillus (= Emericella) nidulans genome. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14564–14569. doi: 10.1073/pnas.94.26.14564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sturtevant A. H. A THIRD GROUP OF LINKED GENES IN DROSOPHILA AMPELOPHILA. Science. 1913 Jun 27;37(965):990–992. doi: 10.1126/science.37.965.990. [DOI] [PubMed] [Google Scholar]
  21. Wang Y., Prade R. A., Griffith J., Timberlake W. E., Arnold J. A fast random cost algorithm for physical mapping. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11094–11098. doi: 10.1073/pnas.91.23.11094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang Y., Prade R. A., Griffith J., Timberlake W. E., Arnold J. ODS_BOOTSTRAP: assessing the statistical reliability of physical maps by bootstrap resampling. Comput Appl Biosci. 1994 Dec;10(6):625–634. doi: 10.1093/bioinformatics/10.6.625. [DOI] [PubMed] [Google Scholar]
  23. Xiong M., Chen H. J., Prade R. A., Wang Y., Griffith J., Timberlake W. E., Arnold J. On the consistency of a physical mapping method to reconstruct a chromosome in vitro. Genetics. 1996 Jan;142(1):267–284. doi: 10.1093/genetics/142.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang M. Q., Marr T. G. Genome mapping by nonrandom anchoring: a discrete theoretical analysis. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):600–604. doi: 10.1073/pnas.90.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES