Skip to main content
Genetics logoLink to Genetics
. 2001 Mar;157(3):1331–1341. doi: 10.1093/genetics/157.3.1331

Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops.

R G Allaby 1, T A Brown 1
PMCID: PMC1461568  PMID: 11238418

Abstract

We have used network analysis to study gene sequences of the Triticum and Aegilops 5S rDNA arrays, as well as the spacers of the 5S-DNA-A1 and 5S-DNA-2 loci. Network analysis describes relationships between 5S rDNA sequences in a more realistic fashion than conventional tree building because it makes fewer assumptions about the direction of evolution, the extent of sexual isolation, and the pattern of ancestry and descent. The networks show that the 5S rDNA sequences of Triticum and Aegilops species are related in a reticulate manner around principal nodal sequences. The spacer networks have multiple principal nodes of considerable antiquity but the gene network has just one principal node, corresponding to the correct gene sequence. The networks enable orthologous groups of spacer sequences to be identified. When orthologs are compared it is seen that the patterns of intra- and interspecific diversity are similar for both genes and spacers. We propose that 5S rDNA arrays combine sequence conservation with a large store of mutant variations, the number of correct gene copies within an array being the result of neutral processes that act on gene and spacer regions together.

Full Text

The Full Text of this article is available as a PDF (287.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allaby R. G., Banerjee M., Brown T. A. Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat. Genome. 1999 Apr;42(2):296–307. [PubMed] [Google Scholar]
  2. Allaby R. G., Brown T. A. Identification of a 5S rDNA spacer type specific Triticum urartu and wheats containing the T. urartu genome. Genome. 2000 Apr;43(2):250–254. doi: 10.1139/g99-122. [DOI] [PubMed] [Google Scholar]
  3. Bandelt H. J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999 Jan;16(1):37–48. doi: 10.1093/oxfordjournals.molbev.a026036. [DOI] [PubMed] [Google Scholar]
  4. Bandelt H. J., Forster P., Sykes B. C., Richards M. B. Mitochondrial portraits of human populations using median networks. Genetics. 1995 Oct;141(2):743–753. doi: 10.1093/genetics/141.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry A., Kreitman M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics. 1993 Jul;134(3):869–893. doi: 10.1093/genetics/134.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dinman J. D., Wickner R. B. 5 S rRNA is involved in fidelity of translational reading frame. Genetics. 1995 Sep;141(1):95–105. doi: 10.1093/genetics/141.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  8. Dubcovsky J., Dvorák J. Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics. 1995 Aug;140(4):1367–1377. doi: 10.1093/genetics/140.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erdmann V. A., Wolters J. Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res. 1986;14 (Suppl):r1–59. doi: 10.1093/nar/14.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forster P., Harding R., Torroni A., Bandelt H. J. Origin and evolution of Native American mtDNA variation: a reappraisal. Am J Hum Genet. 1996 Oct;59(4):935–945. [PMC free article] [PubMed] [Google Scholar]
  12. Gerlach W. L., Dyer T. A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 1980 Nov 11;8(21):4851–4865. doi: 10.1093/nar/8.21.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldsbrough P. B., Ellis T. H., Cullis C. A. Organisation of the 5S RNA genes in flax. Nucleic Acids Res. 1981 Nov 25;9(22):5895–5904. doi: 10.1093/nar/9.22.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hillis D. M., Moritz C., Porter C. A., Baker R. J. Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science. 1991 Jan 18;251(4991):308–310. doi: 10.1126/science.1987647. [DOI] [PubMed] [Google Scholar]
  15. Kanazin V., Ananiev E., Blake T. The genetics of 5S rRNA encoding multigene families in barley. Genome. 1993 Dec;36(6):1023–1028. doi: 10.1139/g93-136. [DOI] [PubMed] [Google Scholar]
  16. Kellogg E. A., Appels R. Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics. 1995 May;140(1):325–343. doi: 10.1093/genetics/140.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lagudah E. S., Clarke B. C., Appels R. Phylogenetic relationships of Triticum tauschii, the D-genome donor to hexaploid wheat. 4. Variation and chromosomal location of 5S DNA. Genome. 1989 Dec;32(6):1017–1025. doi: 10.1139/g89-546. [DOI] [PubMed] [Google Scholar]
  18. Lassner M., Dvorak J. Preferential homogenization between adjacent and alternate subrepeats in wheat rDNA. Nucleic Acids Res. 1986 Jul 11;14(13):5499–5512. doi: 10.1093/nar/14.13.5499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reddy P., Appels R. A second locus for the 5S multigene family in Secale L.: sequence divergence in two lineages of the family. Genome. 1989 Jun;32(3):457–467. [PubMed] [Google Scholar]
  21. Richards M., Côrte-Real H., Forster P., Macaulay V., Wilkinson-Herbots H., Demaine A., Papiha S., Hedges R., Bandelt H. J., Sykes B. Paleolithic and neolithic lineages in the European mitochondrial gene pool. Am J Hum Genet. 1996 Jul;59(1):185–203. [PMC free article] [PubMed] [Google Scholar]
  22. Sallares R., Allaby R. G., Brown T. A. PCR-based identification of wheat genomes. Mol Ecol. 1995 Aug;4(4):509–514. doi: 10.1111/j.1365-294x.1995.tb00246.x. [DOI] [PubMed] [Google Scholar]
  23. Schlötterer C., Tautz D. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol. 1994 Sep 1;4(9):777–783. doi: 10.1016/s0960-9822(00)00175-5. [DOI] [PubMed] [Google Scholar]
  24. Sykes B., Leiboff A., Low-Beer J., Tetzner S., Richards M. The origins of the Polynesians: an interpretation from mitochondrial lineage analysis. Am J Hum Genet. 1995 Dec;57(6):1463–1475. [PMC free article] [PubMed] [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Torroni A., Bandelt H. J., D'Urbano L., Lahermo P., Moral P., Sellitto D., Rengo C., Forster P., Savontaus M. L., Bonné-Tamir B. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe. Am J Hum Genet. 1998 May;62(5):1137–1152. doi: 10.1086/301822. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES