Skip to main content
Genetics logoLink to Genetics
. 2001 Mar;157(3):1077–1087. doi: 10.1093/genetics/157.3.1077

Two types of recombination hotspots in bacteriophage T4: one requires DNA damage and a replication origin and the other does not.

P L Doan 1, K G Belanger 1, K N Kreuzer 1
PMCID: PMC1461569  PMID: 11238396

Abstract

Recombination hotspots have previously been discovered in bacteriophage T4 by two different approaches, marker rescue recombination from heavily damaged phage genomes and recombination during co-infection by two undamaged phage genomes. The phage replication origin ori(34) is located in a region that has a hotspot in both assays. To determine the relationship between the origin and the two kinds of hotspots, we generated phage carrying point mutations that should inactivate ori(34) but not affect the gene 34 reading frame (within which ori(34) is located). The mutations eliminated the function of the origin, as judged by both autonomous replication of plasmids during T4 infection and two-dimensional gel analysis of phage genomic replication intermediates. As expected from past studies, the ori(34) mutations also eliminated the hotspot for marker rescue recombination from UV-irradiated genomes. However, the origin mutations had no effect on the recombination hotspot that is observed with co-infecting undamaged phage genomes, demonstrating that some DNA sequence other than the origin is responsible for inflated recombination between undamaged genomes. The hotspots for marker rescue recombination may result from a replication fork restart process that acts upon origin-initiated replication forks that become blocked at nearby DNA damage. The two-dimensional gel analysis also revealed phage T4 replication intermediates not previously detected by this method, including origin theta forms.

Full Text

The Full Text of this article is available as a PDF (297.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckendorf S. K., Wilson J. H. A recombination gradient in bacteriophage T4 gene 34. Virology. 1972 Nov;50(2):315–321. doi: 10.1016/0042-6822(72)90382-0. [DOI] [PubMed] [Google Scholar]
  2. Belanger K. G., Kreuzer K. N. Bacteriophage T4 initiates bidirectional DNA replication through a two-step process. Mol Cell. 1998 Nov;2(5):693–701. doi: 10.1016/s1097-2765(00)80167-7. [DOI] [PubMed] [Google Scholar]
  3. Brewer B. J., Fangman W. L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987 Nov 6;51(3):463–471. doi: 10.1016/0092-8674(87)90642-8. [DOI] [PubMed] [Google Scholar]
  4. Burck K. B., Miller R. C., Jr Marker rescue and partial replication of bacteriophage T7 DNA. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6144–6148. doi: 10.1073/pnas.75.12.6144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carles-Kinch K., Kreuzer K. N. RNA-DNA hybrid formation at a bacteriophage T4 replication origin. J Mol Biol. 1997 Mar 14;266(5):915–926. doi: 10.1006/jmbi.1996.0844. [DOI] [PubMed] [Google Scholar]
  6. Cox M. M., Goodman M. F., Kreuzer K. N., Sherratt D. J., Sandler S. J., Marians K. J. The importance of repairing stalled replication forks. Nature. 2000 Mar 2;404(6773):37–41. doi: 10.1038/35003501. [DOI] [PubMed] [Google Scholar]
  7. Friedman K. L., Brewer B. J. Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol. 1995;262:613–627. doi: 10.1016/0076-6879(95)62048-6. [DOI] [PubMed] [Google Scholar]
  8. George J. W., Kreuzer K. N. Repair of double-strand breaks in bacteriophage T4 by a mechanism that involves extensive DNA replication. Genetics. 1996 Aug;143(4):1507–1520. doi: 10.1093/genetics/143.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guild N., Gayle M., Sweeney R., Hollingsworth T., Modeer T., Gold L. Transcriptional activation of bacteriophage T4 middle promoters by the motA protein. J Mol Biol. 1988 Jan 20;199(2):241–258. doi: 10.1016/0022-2836(88)90311-7. [DOI] [PubMed] [Google Scholar]
  10. Hong G., Kreuzer K. N. An antitumor drug-induced topoisomerase cleavage complex blocks a bacteriophage T4 replication fork in vivo. Mol Cell Biol. 2000 Jan;20(2):594–603. doi: 10.1128/mcb.20.2.594-603.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horiuchi T., Fujimura Y., Nishitani H., Kobayashi T., Hidaka M. The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA. J Bacteriol. 1994 Aug;176(15):4656–4663. doi: 10.1128/jb.176.15.4656-4663.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horiuchi T., Fujimura Y. Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate. J Bacteriol. 1995 Feb;177(3):783–791. doi: 10.1128/jb.177.3.783-791.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kowalczykowski S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci. 2000 Apr;25(4):156–165. doi: 10.1016/s0968-0004(00)01569-3. [DOI] [PubMed] [Google Scholar]
  15. Kreuzer K. N., Alberts B. M. A defective phage system reveals bacteriophage T4 replication origins that coincide with recombination hot spots. Proc Natl Acad Sci U S A. 1985 May;82(10):3345–3349. doi: 10.1073/pnas.82.10.3345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kreuzer K. N., Alberts B. M. Characterization of a defective phage system for the analysis of bacteriophage T4 DNA replication origins. J Mol Biol. 1986 Mar 20;188(2):185–198. doi: 10.1016/0022-2836(86)90303-7. [DOI] [PubMed] [Google Scholar]
  17. Kreuzer K. N. Bacteriophage T4, a model system for understanding the mechanism of type II topoisomerase inhibitors. Biochim Biophys Acta. 1998 Oct 1;1400(1-3):339–347. doi: 10.1016/s0167-4781(98)00145-6. [DOI] [PubMed] [Google Scholar]
  18. Kreuzer K. N., Engman H. W., Yap W. Y. Tertiary initiation of replication in bacteriophage T4. Deletion of the overlapping uvsY promoter/replication origin from the phage genome. J Biol Chem. 1988 Aug 15;263(23):11348–11357. [PubMed] [Google Scholar]
  19. Kreuzer K. N. Recombination-dependent DNA replication in phage T4. Trends Biochem Sci. 2000 Apr;25(4):165–173. doi: 10.1016/s0968-0004(00)01559-0. [DOI] [PubMed] [Google Scholar]
  20. Kreuzer K. N., Saunders M., Weislo L. J., Kreuzer H. W. Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4. J Bacteriol. 1995 Dec;177(23):6844–6853. doi: 10.1128/jb.177.23.6844-6853.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kreuzer K. N., Yap W. Y., Menkens A. E., Engman H. W. Recombination-dependent replication of plasmids during bacteriophage T4 infection. J Biol Chem. 1988 Aug 15;263(23):11366–11373. [PubMed] [Google Scholar]
  22. Kuzminov A. Collapse and repair of replication forks in Escherichia coli. Mol Microbiol. 1995 May;16(3):373–384. doi: 10.1111/j.1365-2958.1995.tb02403.x. [DOI] [PubMed] [Google Scholar]
  23. Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents. doi: 10.1128/mmbr.63.4.751-813.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuzminov A., Schabtach E., Stahl F. W. Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease. EMBO J. 1994 Jun 15;13(12):2764–2776. doi: 10.1002/j.1460-2075.1994.tb06570.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Levy J. N. Effects of radiophosphorus decay in bacteriophage T4D. II. The mechanism of marker rescue. Virology. 1975 Nov;68(1):14–26. doi: 10.1016/0042-6822(75)90143-9. [DOI] [PubMed] [Google Scholar]
  26. Luria S. E. Reactivation of Irradiated Bacteriophage by Transfer of Self-Reproducing Units. Proc Natl Acad Sci U S A. 1947 Sep;33(9):253–264. doi: 10.1073/pnas.33.9.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marians K. J. PriA-directed replication fork restart in Escherichia coli. Trends Biochem Sci. 2000 Apr;25(4):185–189. doi: 10.1016/s0968-0004(00)01565-6. [DOI] [PubMed] [Google Scholar]
  28. Menkens A. E., Kreuzer K. N. Deletion analysis of bacteriophage T4 tertiary origins. A promoter sequence is required for a rifampicin-resistant replication origin. J Biol Chem. 1988 Aug 15;263(23):11358–11365. [PubMed] [Google Scholar]
  29. Michel B., Ehrlich S. D., Uzest M. DNA double-strand breaks caused by replication arrest. EMBO J. 1997 Jan 15;16(2):430–438. doi: 10.1093/emboj/16.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mosig G., Colowick N., Gruidl M. E., Chang A., Harvey A. J. Multiple initiation mechanisms adapt phage T4 DNA replication to physiological changes during T4's development. FEMS Microbiol Rev. 1995 Aug;17(1-2):83–98. doi: 10.1111/j.1574-6976.1995.tb00190.x. [DOI] [PubMed] [Google Scholar]
  31. Mosig G. Distances separating genetic markers in T4 DNA. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1177–1183. doi: 10.1073/pnas.56.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mueller J. E., Clyman J., Huang Y. J., Parker M. M., Belfort M. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 1996 Feb 1;10(3):351–364. doi: 10.1101/gad.10.3.351. [DOI] [PubMed] [Google Scholar]
  33. Neece S. H., Carles-Kinch K., Tomso D. J., Kreuzer K. N. Role of recombinational repair in sensitivity to an antitumour agent that inhibits bacteriophage T4 type II DNA topoisomerase. Mol Microbiol. 1996 Jun;20(6):1145–1154. doi: 10.1111/j.1365-2958.1996.tb02635.x. [DOI] [PubMed] [Google Scholar]
  34. Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rayssiguier C., Vigier P. R. Genetic evidence for the existence of partial replicas of T4 genomes inactivated by irradiation under ultraviolet light.?*ULTRAVIOLET RAYS. Virology. 1977 May 15;78(2):442–452. doi: 10.1016/0042-6822(77)90121-0. [DOI] [PubMed] [Google Scholar]
  36. Seigneur M., Bidnenko V., Ehrlich S. D., Michel B. RuvAB acts at arrested replication forks. Cell. 1998 Oct 30;95(3):419–430. doi: 10.1016/s0092-8674(00)81772-9. [DOI] [PubMed] [Google Scholar]
  37. Sharma M., Ellis R. L., Hinton D. M. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6658–6662. doi: 10.1073/pnas.89.14.6658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stahl F. Meiotic recombination in yeast: coronation of the double-strand-break repair model. Cell. 1996 Dec 13;87(6):965–968. doi: 10.1016/s0092-8674(00)81791-2. [DOI] [PubMed] [Google Scholar]
  39. Vaiskunaite R., Miller A., Davenport L., Mosig G. Two new early bacteriophage T4 genes, repEA and repEB, that are important for DNA replication initiated from origin E. J Bacteriol. 1999 Nov;181(22):7115–7125. doi: 10.1128/jb.181.22.7115-7125.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Voelkel-Meiman K., Keil R. L., Roeder G. S. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell. 1987 Mar 27;48(6):1071–1079. doi: 10.1016/0092-8674(87)90714-8. [DOI] [PubMed] [Google Scholar]
  41. Womack F. C. Cross-reactivation differences in bacteriophage T4D. Virology. 1965 Aug;26(4):758–760. [PubMed] [Google Scholar]
  42. Yap W. Y., Kreuzer K. N. Recombination hotspots in bacteriophage T4 are dependent on replication origins. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6043–6047. doi: 10.1073/pnas.88.14.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES