Skip to main content
Genetics logoLink to Genetics
. 2001 Mar;157(3):935–947. doi: 10.1093/genetics/157.3.935

Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis.

R T Nelson 1, J Hua 1, B Pryor 1, J K Lodge 1
PMCID: PMC1461580  PMID: 11238384

Abstract

Cryptococcus neoformans var. neoformans is an important opportunistic fungal pathogen of patients whose immune system has been compromised due to viral infection, antineoplastic chemotherapy, or tissue transplantation. As many as 13% of all AIDS patients suffer a life-threatening cryptococcal infection at some time during the course of their HIV disease. To begin to understand the molecular basis for virulence in Cryptococcus neoformans var. neoformans serotype A, we have employed signature-tagged mutagenesis (STM) to identify mutants with altered virulence in a mouse model. The critical parameters of signature-tagged mutagenesis in C. neoformans are explored. Data are presented showing that at least 100 different strains can be mixed together in a single animal with each participating in the infection and that there is no apparent interaction between a virulent strain and an avirulent strain in our animal model. Using signature-tagged mutagenesis, we identified 39 mutants with significantly altered growth in a competitive assay. Molecular analyses of these mutants indicated that 19 (49%) contained an insertion in the actin promoter by homologous recombination from a single crossover event, creating a duplication of the actin promoter and the integration of single or multiple copies of the vector. Analysis of the chromosomal insertion sites of those mutants that did not have an integration event in the actin promoter revealed an approximately random distribution among the chromosomes. Individual challenge of the putative mutants in a mouse model revealed five hypovirulent mutants and one hypervirulent mutant.

Full Text

The Full Text of this article is available as a PDF (394.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alspaugh J. A., Perfect J. R., Heitman J. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genet Biol. 1998 Oct;25(1):1–14. doi: 10.1006/fgbi.1998.1079. [DOI] [PubMed] [Google Scholar]
  2. Badger J. L., Wass C. A., Weissman S. J., Kim K. S. Application of signature-tagged mutagenesis for identification of escherichia coli K1 genes that contribute to invasion of human brain microvascular endothelial cells. Infect Immun. 2000 Sep;68(9):5056–5061. doi: 10.1128/iai.68.9.5056-5061.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barluzzi R., Brozzetti A., Mariucci G., Tantucci M., Neglia R. G., Bistoni F., Blasi E. Establishment of protective immunity against cerebral cryptococcosis by means of an avirulent, non melanogenic Cryptococcus neoformans strain. J Neuroimmunol. 2000 Sep 22;109(2):75–86. doi: 10.1016/s0165-5728(00)00319-2. [DOI] [PubMed] [Google Scholar]
  4. Barluzzi R., Mazzolla R., Brozzetti A., Puliti M., Mariucci G., Mosci P., Bistoni F., Blasi E. A low virulent strain of Candida albicans enhances brain anticryptococcal defenses: characterization of the local immune reaction by RT-PCR and histochemical analysis. J Neuroimmunol. 1997 Oct;79(1):37–48. doi: 10.1016/s0165-5728(97)00105-7. [DOI] [PubMed] [Google Scholar]
  5. Blasi E., Barluzzi R., Mazzolla R., Pitzurra L., Puliti M., Saleppico S., Bistoni F. Biomolecular events involved in anticryptococcal resistance in the brain. Infect Immun. 1995 Apr;63(4):1218–1222. doi: 10.1128/iai.63.4.1218-1222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blasi E., Mazzolla R., Barluzzi R., Mosci P., Bistoni F. Anticryptococcal resistance in the mouse brain: beneficial effects of local administration of heat-inactivated yeast cells. Infect Immun. 1994 Aug;62(8):3189–3196. doi: 10.1128/iai.62.8.3189-3196.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. S., Aufauvre-Brown A., Brown J., Jennings J. M., Arst H., Jr, Holden D. W. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol. 2000 Jun;36(6):1371–1380. doi: 10.1046/j.1365-2958.2000.01953.x. [DOI] [PubMed] [Google Scholar]
  8. Brueske C. H. Proteolytic activity of a clinical isolate of Cryptococcus neoformans. J Clin Microbiol. 1986 Mar;23(3):631–633. doi: 10.1128/jcm.23.3.631-633.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 1999 Oct;34(2):257–267. doi: 10.1046/j.1365-2958.1999.01593.x. [DOI] [PubMed] [Google Scholar]
  10. Chang Y. C., Kwon-Chung K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994 Jul;14(7):4912–4919. doi: 10.1128/mcb.14.7.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chang Y. C., Kwon-Chung K. J. Isolation of the third capsule-associated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect Immun. 1998 May;66(5):2230–2236. doi: 10.1128/iai.66.5.2230-2236.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chang Y. C., Penoyer L. A., Kwon-Chung K. J. The second capsule gene of cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun. 1996 Jun;64(6):1977–1983. doi: 10.1128/iai.64.6.1977-1983.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chaturvedi V., Flynn T., Niehaus W. G., Wong B. Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Microbiology. 1996 Apr;142(Pt 4):937–943. doi: 10.1099/00221287-142-4-937. [DOI] [PubMed] [Google Scholar]
  14. Chen S. C., Muller M., Zhou J. Z., Wright L. C., Sorrell T. C. Phospholipase activity in Cryptococcus neoformans: a new virulence factor? J Infect Dis. 1997 Feb;175(2):414–420. doi: 10.1093/infdis/175.2.414. [DOI] [PubMed] [Google Scholar]
  15. Chen S. C., Wright L. C., Santangelo R. T., Muller M., Moran V. R., Kuchel P. W., Sorrell T. C. Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infect Immun. 1997 Feb;65(2):405–411. doi: 10.1128/iai.65.2.405-411.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cormack B. P., Ghori N., Falkow S. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science. 1999 Jul 23;285(5427):578–582. doi: 10.1126/science.285.5427.578. [DOI] [PubMed] [Google Scholar]
  17. Cox G. M., Mukherjee J., Cole G. T., Casadevall A., Perfect J. R. Urease as a virulence factor in experimental cryptococcosis. Infect Immun. 2000 Feb;68(2):443–448. doi: 10.1128/iai.68.2.443-448.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cox G. M., Toffaletti D. L., Perfect J. R. Dominant selection system for use in Cryptococcus neoformans. J Med Vet Mycol. 1996 Nov-Dec;34(6):385–391. [PubMed] [Google Scholar]
  19. Cruz M. C., Sia R. A., Olson M., Cox G. M., Heitman J. Comparison of the roles of calcineurin in physiology and virulence in serotype D and serotype A strains of Cryptococcus neoformans. Infect Immun. 2000 Feb;68(2):982–985. doi: 10.1128/iai.68.2.982-985.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Davidson R. C., Cruz M. C., Sia R. A., Allen B., Alspaugh J. A., Heitman J. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol. 2000 Feb;29(1):38–48. doi: 10.1006/fgbi.1999.1180. [DOI] [PubMed] [Google Scholar]
  21. Edelstein P. H., Edelstein M. A., Higa F., Falkow S. Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8190–8195. doi: 10.1073/pnas.96.14.8190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Edman J. C., Kwon-Chung K. J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 1990 Sep;10(9):4538–4544. doi: 10.1128/mcb.10.9.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Eng R. H., Bishburg E., Smith S. M., Kapila R. Cryptococcal infections in patients with acquired immune deficiency syndrome. Am J Med. 1986 Jul;81(1):19–23. doi: 10.1016/0002-9343(86)90176-2. [DOI] [PubMed] [Google Scholar]
  24. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995 Jul 21;269(5222):400–403. doi: 10.1126/science.7618105. [DOI] [PubMed] [Google Scholar]
  25. Hua J., Meyer J. D., Lodge J. K. Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans. Clin Diagn Lab Immunol. 2000 Jan;7(1):125–128. doi: 10.1128/cdli.7.1.125-128.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ibrahim A. S., Filler S. G., Alcouloumre M. S., Kozel T. R., Edwards J. E., Jr, Ghannoum M. A. Adherence to and damage of endothelial cells by Cryptococcus neoformans in vitro: role of the capsule. Infect Immun. 1995 Nov;63(11):4368–4374. doi: 10.1128/iai.63.11.4368-4374.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kominami K., Okura N., Kawamura M., DeMartino G. N., Slaughter C. A., Shimbara N., Chung C. H., Fujimuro M., Yokosawa H., Shimizu Y. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol Biol Cell. 1997 Jan;8(1):171–187. doi: 10.1091/mbc.8.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kwon-Chung K. J., Edman J. C., Wickes B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992 Feb;60(2):602–605. doi: 10.1128/iai.60.2.602-605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lodge J. K., Jackson-Machelski E., Higgins M., McWherter C. A., Sikorski J. A., Devadas B., Gordon J. I. Genetic and biochemical studies establish that the fungicidal effect of a fully depeptidized inhibitor of Cryptococcus neoformans myristoyl-CoA:protein N-myristoyltransferase (Nmt) is Nmt-dependent. J Biol Chem. 1998 May 15;273(20):12482–12491. doi: 10.1074/jbc.273.20.12482. [DOI] [PubMed] [Google Scholar]
  31. Lodge J. K., Jackson-Machelski E., Toffaletti D. L., Perfect J. R., Gordon J. I. Targeted gene replacement demonstrates that myristoyl-CoA: protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12008–12012. doi: 10.1073/pnas.91.25.12008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Merkel G. J., Cunningham R. K. The interaction of Cryptococcus neoformans with primary rat lung cell cultures. J Med Vet Mycol. 1992;30(2):115–121. [PubMed] [Google Scholar]
  33. Mitchell T. G., Perfect J. R. Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev. 1995 Oct;8(4):515–548. doi: 10.1128/cmr.8.4.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nyhus K. J., Jacobson E. S. Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans. Infect Immun. 1999 May;67(5):2357–2365. doi: 10.1128/iai.67.5.2357-2365.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Odom A., Muir S., Lim E., Toffaletti D. L., Perfect J., Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 1997 May 15;16(10):2576–2589. doi: 10.1093/emboj/16.10.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Perfect J. R., Toffaletti D. L., Rude T. H. The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun. 1993 Oct;61(10):4446–4451. doi: 10.1128/iai.61.10.4446-4451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Polissi A., Pontiggia A., Feger G., Altieri M., Mottl H., Ferrari L., Simon D. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun. 1998 Dec;66(12):5620–5629. doi: 10.1128/iai.66.12.5620-5629.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rhodes J. C., Polacheck I., Kwon-Chung K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun. 1982 Jun;36(3):1175–1184. doi: 10.1128/iai.36.3.1175-1184.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Salas S. D., Bennett J. E., Kwon-Chung K. J., Perfect J. R., Williamson P. R. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med. 1996 Aug 1;184(2):377–386. doi: 10.1084/jem.184.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwan W. R., Coulter S. N., Ng E. Y., Langhorne M. H., Ritchie H. D., Brody L. L., Westbrock-Wadman S., Bayer A. S., Folger K. R., Stover C. K. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect Immun. 1998 Feb;66(2):567–572. doi: 10.1128/iai.66.2.567-572.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Toffaletti D. L., Rude T. H., Johnston S. A., Durack D. T., Perfect J. R. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol. 1993 Mar;175(5):1405–1411. doi: 10.1128/jb.175.5.1405-1411.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang P., Perfect J. R., Heitman J. The G-protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol. 2000 Jan;20(1):352–362. doi: 10.1128/mcb.20.1.352-362.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wickes B. L., Mayorga M. E., Edman U., Edman J. C. Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7327–7331. doi: 10.1073/pnas.93.14.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wickes B. L., Moore T. D., Kwon-Chung K. J. Comparison of the electrophoretic karyotypes and chromosomal location of ten genes in the two varieties of Cryptococcus neoformans. Microbiology. 1994 Mar;140(Pt 3):543–550. doi: 10.1099/00221287-140-3-543. [DOI] [PubMed] [Google Scholar]
  45. van Nocker S., Sadis S., Rubin D. M., Glickman M., Fu H., Coux O., Wefes I., Finley D., Vierstra R. D. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol. 1996 Nov;16(11):6020–6028. doi: 10.1128/mcb.16.11.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES