Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1569–1579. doi: 10.1093/genetics/157.4.1569

Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.

M L Rolfsmeier 1, M J Dixon 1, L Pessoa-Brandão 1, R Pelletier 1, J J Miret 1, R S Lahue 1
PMCID: PMC1461582  PMID: 11290713

Abstract

Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of approximately 15--17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast.

Full Text

The Full Text of this article is available as a PDF (335.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. T., Jr, Warren S. T. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995;29:703–728. doi: 10.1146/annurev.ge.29.120195.003415. [DOI] [PubMed] [Google Scholar]
  2. Balakumaran B. S., Freudenreich C. H., Zakian V. A. CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum Mol Genet. 2000 Jan 1;9(1):93–100. doi: 10.1093/hmg/9.1.93. [DOI] [PubMed] [Google Scholar]
  3. Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8;271(5254):1423–1427. doi: 10.1126/science.271.5254.1423. [DOI] [PubMed] [Google Scholar]
  4. Cummings C. J., Zoghbi H. Y. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet. 2000 Apr 12;9(6):909–916. doi: 10.1093/hmg/9.6.909. [DOI] [PubMed] [Google Scholar]
  5. Freudenreich C. H., Kantrow S. M., Zakian V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998 Feb 6;279(5352):853–856. doi: 10.1126/science.279.5352.853. [DOI] [PubMed] [Google Scholar]
  6. Freudenreich C. H., Stavenhagen J. B., Zakian V. A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol. 1997 Apr;17(4):2090–2098. doi: 10.1128/mcb.17.4.2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gacy A. M., Goellner G. M., Spiro C., Chen X., Gupta G., Bradbury E. M., Dyer R. B., Mikesell M. J., Yao J. Z., Johnson A. J. GAA instability in Friedreich's Ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol Cell. 1998 Mar;1(4):583–593. doi: 10.1016/s1097-2765(00)80058-1. [DOI] [PubMed] [Google Scholar]
  8. Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
  9. Gacy A. M., McMurray C. T. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA. Biochemistry. 1998 Jun 30;37(26):9426–9434. doi: 10.1021/bi980157s. [DOI] [PubMed] [Google Scholar]
  10. Gordenin D. A., Kunkel T. A., Resnick M. A. Repeat expansion--all in a flap? Nat Genet. 1997 Jun;16(2):116–118. doi: 10.1038/ng0697-116. [DOI] [PubMed] [Google Scholar]
  11. Gusella J. F., MacDonald M. E. Trinucleotide instability: a repeating theme in human inherited disorders. Annu Rev Med. 1996;47:201–209. doi: 10.1146/annurev.med.47.1.201. [DOI] [PubMed] [Google Scholar]
  12. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  13. Henricksen L. A., Tom S., Liu Y., Bambara R. A. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J Biol Chem. 2000 Jun 2;275(22):16420–16427. doi: 10.1074/jbc.M909635199. [DOI] [PubMed] [Google Scholar]
  14. Hirst M. C., White P. J. Cloned human FMR1 trinucleotide repeats exhibit a length- and orientation-dependent instability suggestive of in vivo lagging strand secondary structure. Nucleic Acids Res. 1998 May 15;26(10):2353–2358. doi: 10.1093/nar/26.10.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jakupciak J. P., Wells R. D. Genetic instabilities in (CTG.CAG) repeats occur by recombination. J Biol Chem. 1999 Aug 13;274(33):23468–23479. doi: 10.1074/jbc.274.33.23468. [DOI] [PubMed] [Google Scholar]
  16. Jankowski C., Nasar F., Nag D. K. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2134–2139. doi: 10.1073/pnas.040460297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kang S., Jaworski A., Ohshima K., Wells R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet. 1995 Jun;10(2):213–218. doi: 10.1038/ng0695-213. [DOI] [PubMed] [Google Scholar]
  18. Kang S., Ohshima K., Jaworski A., Wells R. D. CTG triplet repeats from the myotonic dystrophy gene are expanded in Escherichia coli distal to the replication origin as a single large event. J Mol Biol. 1996 May 17;258(4):543–547. doi: 10.1006/jmbi.1996.0266. [DOI] [PubMed] [Google Scholar]
  19. Kramer B., Kramer W., Williamson M. S., Fogel S. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol Cell Biol. 1989 Oct;9(10):4432–4440. doi: 10.1128/mcb.9.10.4432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kunst C. B., Leeflang E. P., Iber J. C., Arnheim N., Warren S. T. The effect of FMR1 CGG repeat interruptions on mutation frequency as measured by sperm typing. J Med Genet. 1997 Aug;34(8):627–631. doi: 10.1136/jmg.34.8.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leeflang E. P., Tavaré S., Marjoram P., Neal C. O., Srinidhi J., MacFarlane H., MacDonald M. E., Gusella J. F., de Young M., Wexler N. S. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Hum Mol Genet. 1999 Feb;8(2):173–183. doi: 10.1093/hmg/8.2.173. [DOI] [PubMed] [Google Scholar]
  22. Leeflang E. P., Zhang L., Tavaré S., Hubert R., Srinidhi J., MacDonald M. E., Myers R. H., de Young M., Wexler N. S., Gusella J. F. Single sperm analysis of the trinucleotide repeats in the Huntington's disease gene: quantification of the mutation frequency spectrum. Hum Mol Genet. 1995 Sep;4(9):1519–1526. doi: 10.1093/hmg/4.9.1519. [DOI] [PubMed] [Google Scholar]
  23. Maurer D. J., O'Callaghan B. L., Livingston D. M. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Dec;16(12):6617–6622. doi: 10.1128/mcb.16.12.6617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McMurray C. T. DNA secondary structure: a common and causative factor for expansion in human disease. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1823–1825. doi: 10.1073/pnas.96.5.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McMurray C. T. Mechanisms of DNA expansion. Chromosoma. 1995 Oct;104(1):2–13. doi: 10.1007/BF00352220. [DOI] [PubMed] [Google Scholar]
  26. Miret J. J., Pessoa-Brandão L., Lahue R. S. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Jun;17(6):3382–3387. doi: 10.1128/mcb.17.6.3382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miret J. J., Pessoa-Brandão L., Lahue R. S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12438–12443. doi: 10.1073/pnas.95.21.12438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 1997 Jun 15;25(12):2245–2254. doi: 10.1093/nar/25.12.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mitas M., Yu A., Dill J., Kamp T. J., Chambers E. J., Haworth I. S. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res. 1995 Mar 25;23(6):1050–1059. doi: 10.1093/nar/23.6.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Monckton D. G., Cayuela M. L., Gould F. K., Brock G. J., Silva R., Ashizawa T. Very large (CAG)(n) DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males. Hum Mol Genet. 1999 Dec;8(13):2473–2478. doi: 10.1093/hmg/8.13.2473. [DOI] [PubMed] [Google Scholar]
  31. Mornet E., Chateau C., Hirst M. C., Thepot F., Taillandier A., Cibois O., Serre J. L. Analysis of germline variation at the FMR1 CGG repeat shows variation in the normal-premutated borderline range. Hum Mol Genet. 1996 Jun;5(6):821–825. doi: 10.1093/hmg/5.6.821. [DOI] [PubMed] [Google Scholar]
  32. Moseley M. L., Schut L. J., Bird T. D., Koob M. D., Day J. W., Ranum L. P. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet. 2000 Sep 1;9(14):2125–2130. doi: 10.1093/hmg/9.14.2125. [DOI] [PubMed] [Google Scholar]
  33. Richard G. F., Goellner G. M., McMurray C. T., Haber J. E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 2000 May 15;19(10):2381–2390. doi: 10.1093/emboj/19.10.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Richards R. I., Sutherland G. R. Simple repeat DNA is not replicated simply. Nat Genet. 1994 Feb;6(2):114–116. doi: 10.1038/ng0294-114. [DOI] [PubMed] [Google Scholar]
  35. Rolfsmeier M. L., Lahue R. S. Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol. 2000 Jan;20(1):173–180. doi: 10.1128/mcb.20.1.173-180.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sakamoto N., Chastain P. D., Parniewski P., Ohshima K., Pandolfo M., Griffith J. D., Wells R. D. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell. 1999 Apr;3(4):465–475. doi: 10.1016/s1097-2765(00)80474-8. [DOI] [PubMed] [Google Scholar]
  37. Samadashwily G. M., Raca G., Mirkin S. M. Trinucleotide repeats affect DNA replication in vivo. Nat Genet. 1997 Nov;17(3):298–304. doi: 10.1038/ng1197-298. [DOI] [PubMed] [Google Scholar]
  38. Sarkar P. S., Chang H. C., Boudi F. B., Reddy S. CTG repeats show bimodal amplification in E. coli. Cell. 1998 Nov 13;95(4):531–540. doi: 10.1016/s0092-8674(00)81620-7. [DOI] [PubMed] [Google Scholar]
  39. Schweitzer J. K., Livingston D. M. Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum Mol Genet. 1997 Mar;6(3):349–355. doi: 10.1093/hmg/6.3.349. [DOI] [PubMed] [Google Scholar]
  40. Schweitzer J. K., Livingston D. M. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum Mol Genet. 1998 Jan;7(1):69–74. doi: 10.1093/hmg/7.1.69. [DOI] [PubMed] [Google Scholar]
  41. Schweitzer J. K., Livingston D. M. The effect of DNA replication mutations on CAG tract stability in yeast. Genetics. 1999 Jul;152(3):953–963. doi: 10.1093/genetics/152.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sinden R. R. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet. 1999 Feb;64(2):346–353. doi: 10.1086/302271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Spiro C., Pelletier R., Rolfsmeier M. L., Dixon M. J., Lahue R. S., Gupta G., Park M. S., Chen X., Mariappan S. V., McMurray C. T. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol Cell. 1999 Dec;4(6):1079–1085. doi: 10.1016/s1097-2765(00)80236-1. [DOI] [PubMed] [Google Scholar]
  44. Takiyama Y., Sakoe K., Soutome M., Namekawa M., Ogawa T., Nakano I., Igarashi S., Oyake M., Tanaka H., Tsuji S. Single sperm analysis of the CAG repeats in the gene for Machado-Joseph disease (MJD1): evidence for non-Mendelian transmission of the MJD1 gene and for the effect of the intragenic CGG/GGG polymorphism on the intergenerational instability. Hum Mol Genet. 1997 Jul;6(7):1063–1068. doi: 10.1093/hmg/6.7.1063. [DOI] [PubMed] [Google Scholar]
  45. Tran H. T., Keen J. D., Kricker M., Resnick M. A., Gordenin D. A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. 1997 May;17(5):2859–2865. doi: 10.1128/mcb.17.5.2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wells R. D., Parniewski P., Pluciennik A., Bacolla A., Gellibolian R., Jaworski A. Small slipped register genetic instabilities in Escherichia coli in triplet repeat sequences associated with hereditary neurological diseases. J Biol Chem. 1998 Jul 31;273(31):19532–19541. doi: 10.1074/jbc.273.31.19532. [DOI] [PubMed] [Google Scholar]
  47. White P. J., Borts R. H., Hirst M. C. Stability of the human fragile X (CGG)(n) triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol Cell Biol. 1999 Aug;19(8):5675–5684. doi: 10.1128/mcb.19.8.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wierdl M., Dominska M., Petes T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. doi: 10.1093/genetics/146.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang L., Leeflang E. P., Yu J., Arnheim N. Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nat Genet. 1994 Aug;7(4):531–535. doi: 10.1038/ng0894-531. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES