Abstract
Quantitative trait loci (QTL) are easily studied in a biallelic system. Such a system requires the cross of two inbred lines presumably fixed for alternative alleles of the QTL. However, development of inbred lines can be time consuming and cost ineffective for species with long generation intervals and severe inbreeding depression. In addition, restriction of the investigation to a biallelic system can sometimes be misleading because many potentially important allelic interactions do not have a chance to express and thus fail to be detected. A complicated mating design involving multiple alleles mimics the actual breeding system. However, it is difficult to develop the statistical model and algorithm using the classical maximum-likelihood method. In this study, we investigate the application of a Bayesian method implemented via the Markov chain Monte Carlo (MCMC) algorithm to QTL mapping under arbitrarily complicated mating designs. We develop the method under a mixed-model framework where the genetic values of founder alleles are treated as random and the nongenetic effects are treated as fixed. With the MCMC algorithm, we first draw the gene flows from the founders to the descendants for each QTL and then draw samples of the genetic parameters. Finally, we are able to simultaneously infer the posterior distribution of the number, the additive and dominance variances, and the chromosomal locations of all identified QTL.
Full Text
The Full Text of this article is available as a PDF (342.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almasy L., Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998 May;62(5):1198–1211. doi: 10.1086/301844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bink M. C., Janss L. L., Quaas R. L. Markov chain Monte Carlo for mapping a quantitative trait locus in outbred populations. Genet Res. 2000 Apr;75(2):231–241. doi: 10.1017/s0016672399004310. [DOI] [PubMed] [Google Scholar]
- Heath S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 1997 Sep;61(3):748–760. doi: 10.1086/515506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoeschele I., Uimari P., Grignola F. E., Zhang Q., Gage K. M. Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics. 1997 Nov;147(3):1445–1457. doi: 10.1093/genetics/147.3.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schork N. J. Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Am J Hum Genet. 1993 Dec;53(6):1306–1319. [PMC free article] [PubMed] [Google Scholar]
- Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slate J., Pemberton J. M., Visscher P. M. Power to detect QTL in a free-living polygynous population. Heredity (Edinb) 1999 Sep;83(Pt 3):327–336. doi: 10.1038/sj.hdy.6885830. [DOI] [PubMed] [Google Scholar]
- Sobel E., Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet. 1996 Jun;58(6):1323–1337. [PMC free article] [PubMed] [Google Scholar]
- Uimari P., Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics. 1997 Jun;146(2):735–743. doi: 10.1093/genetics/146.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wijsman E. M., Amos C. I. Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol. 1997;14(6):719–735. doi: 10.1002/(SICI)1098-2272(1997)14:6<719::AID-GEPI28>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Xu S., Atchley W. R. A random model approach to interval mapping of quantitative trait loci. Genetics. 1995 Nov;141(3):1189–1197. doi: 10.1093/genetics/141.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu S. Mapping quantitative trait loci using multiple families of line crosses. Genetics. 1998 Jan;148(1):517–524. doi: 10.1093/genetics/148.1.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi N., Xu S. Bayesian mapping of quantitative trait loci for complex binary traits. Genetics. 2000 Jul;155(3):1391–1403. doi: 10.1093/genetics/155.3.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]