Abstract
Self-incompatibility (SI) in flowering plants entails the inhibition of fertilization by pollen that express specificities in common with the pistil. In species of the Solanaceae, Rosaceae, and Scrophulariaceae, the inhibiting factor is an extracellular ribonuclease (S-RNase) secreted by stylar tissue. A distinct but as yet unknown gene (provisionally called pollen-S) appears to determine the specific S-RNase from which a pollen tube accepts inhibition. The S-RNase gene and pollen-S segregate with the classically defined S-locus. The origin of a new specificity appears to require, at minimum, mutations in both genes. We explore the conditions under which new specificities may arise from an intermediate state of loss of self-recognition. Our evolutionary analysis of mutations that affect either pistil or pollen specificity indicates that natural selection favors mutations in pollen-S that reduce the set of pistils from which the pollen accepts inhibition and disfavors mutations in the S-RNase gene that cause the nonreciprocal acceptance of pollen specificities. We describe the range of parameters (rate of receipt of self-pollen and relative viability of inbred offspring) that permits the generation of a succession of new specificities. This evolutionary pathway begins with the partial breakdown of SI upon the appearance of a mutation in pollen-S that frees pollen from inhibition by any S-RNase presently in the population and ends with the restoration of SI by a mutation in the S-RNase gene that enables pistils to reject the new pollen type.
Full Text
The Full Text of this article is available as a PDF (283.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyes D. C., Nasrallah M. E., Vrebalov J., Nasrallah J. B. The self-incompatibility (S) haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin. Plant Cell. 1997 Feb;9(2):237–247. doi: 10.1105/tpc.9.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broothaerts W., Janssens G. A., Proost P., Broekaert W. F. cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol. 1995 Feb;27(3):499–511. doi: 10.1007/BF00019317. [DOI] [PubMed] [Google Scholar]
- Charlesworth D. How can two-gene models of self-incompatibility generate new specificities? Plant Cell. 2000 Mar;12(3):309–315. doi: 10.1105/tpc.12.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FISHER R. A model for the generation of self-sterility alleles. J Theor Biol. 1961 Oct;1:411–414. [PubMed] [Google Scholar]
- Huang S., Lee H. S., Karunanandaa B., Kao T. H. Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell. 1994 Jul;6(7):1021–1028. doi: 10.1105/tpc.6.7.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ioerger T. R., Clark A. G., Kao T. H. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732–9735. doi: 10.1073/pnas.87.24.9732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishimizu T., Endo T., Yamaguchi-Kabata Y., Nakamura K. T., Sakiyama F., Norioka S. Identification of regions in which positive selection may operate in S-RNase of Rosaceae: implication for S-allele-specific recognition sites in S-RNase. FEBS Lett. 1998 Dec 4;440(3):337–342. doi: 10.1016/s0014-5793(98)01470-7. [DOI] [PubMed] [Google Scholar]
- Kakeda K., Jordan N. D., Conner A., Ride J. P., Franklin-Tong V. E., Franklin F. C. Identification of residues in a hydrophilic loop of the Papaver rhoeas S protein that play a crucial role in recognition of incompatible pollen. Plant Cell. 1998 Oct;10(10):1723–1732. doi: 10.1105/tpc.10.10.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawata Y., Sakiyama F., Hayashi F., Kyogoku Y. Identification of two essential histidine residues of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem. 1990 Jan 12;187(1):255–262. doi: 10.1111/j.1432-1033.1990.tb15303.x. [DOI] [PubMed] [Google Scholar]
- LEWIS D. Structure of the incompatibility gene; induced mutation rate. Heredity (Edinb) 1949 Dec;3(3):339–355. doi: 10.1038/hdy.1949.25. [DOI] [PubMed] [Google Scholar]
- Lee H. S., Huang S., Kao T. S proteins control rejection of incompatible pollen in Petunia inflata. Nature. 1994 Feb 10;367(6463):560–563. doi: 10.1038/367560a0. [DOI] [PubMed] [Google Scholar]
- Matton D. P., Luu D. T., Xike Q., Laublin G., O'Brien M., Maes O., Morse D., Cappadocia M. Production of an S RNase with dual specificity suggests a novel hypothesis for the generation of new S alleles. Plant Cell. 1999 Nov;11(11):2087–2097. doi: 10.1105/tpc.11.11.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matton D. P., Maes O., Laublin G., Xike Q., Bertrand C., Morse D., Cappadocia M. Hypervariable Domains of Self-Incompatibility RNases Mediate Allele-Specific Pollen Recognition. Plant Cell. 1997 Oct;9(10):1757–1766. doi: 10.1105/tpc.9.10.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murfett J., Atherton T. L., Mou B., Gasser C. S., McClure B. A. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature. 1994 Feb 10;367(6463):563–566. doi: 10.1038/367563a0. [DOI] [PubMed] [Google Scholar]
- Nasrallah J. B., Stein J. C., Kandasamy M. K., Nasrallah M. E. Signaling the arrest of pollen tube development in self-incompatible plants. Science. 1994 Dec 2;266(5190):1505–1508. doi: 10.1126/science.266.5190.1505. [DOI] [PubMed] [Google Scholar]
- Parry S., Newbigin E., Craik D., Nakamura K. T., Bacic A., Oxley D. Structural analysis and molecular model of a self-incompatibility RNase from wild tomato. Plant Physiol. 1998 Feb;116(2):463–469. doi: 10.1104/pp.116.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Royo J., Kunz C., Kowyama Y., Anderson M., Clarke A. E., Newbigin E. Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6511–6514. doi: 10.1073/pnas.91.14.6511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saba-el-Leil M. K., Rivard S., Morse D., Cappadocia M. The S11 and S13 self incompatibility alleles in Solanum chacoense Bitt. are remarkably similar. Plant Mol Biol. 1994 Feb;24(4):571–583. doi: 10.1007/BF00023555. [DOI] [PubMed] [Google Scholar]
- Schopfer C. R., Nasrallah M. E., Nasrallah J. B. The male determinant of self-incompatibility in Brassica. Science. 1999 Nov 26;286(5445):1697–1700. doi: 10.1126/science.286.5445.1697. [DOI] [PubMed] [Google Scholar]
- Suzuki G., Kai N., Hirose T., Fukui K., Nishio T., Takayama S., Isogai A., Watanabe M., Hinata K. Genomic organization of the S locus: Identification and characterization of genes in SLG/SRK region of S(9) haplotype of Brassica campestris (syn. rapa). Genetics. 1999 Sep;153(1):391–400. doi: 10.1093/genetics/153.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takasaki T., Hatakeyama K., Suzuki G., Watanabe M., Isogai A., Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature. 2000 Feb 24;403(6772):913–916. doi: 10.1038/35002628. [DOI] [PubMed] [Google Scholar]
- Takayama S., Shiba H., Iwano M., Shimosato H., Che F. S., Kai N., Watanabe M., Suzuki G., Hinata K., Isogai A. The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1920–1925. doi: 10.1073/pnas.040556397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyenoyama M. K. A generalized least-squares estimate for the origin of sporophytic self-incompatibility. Genetics. 1995 Feb;139(2):975–992. doi: 10.1093/genetics/139.2.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyenoyama M. K. Evolutionary dynamics of self-incompatibility alleles in Brassica. Genetics. 2000 Sep;156(1):351–359. doi: 10.1093/genetics/156.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyenoyama M. K., Newbigin E. Evolutionary dynamics of dual-specificity self-incompatibility alleles. Plant Cell. 2000 Mar;12(3):310–315. doi: 10.1105/tpc.12.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xue Y., Carpenter R., Dickinson H. G., Coen E. S. Origin of allelic diversity in antirrhinum S locus RNases. Plant Cell. 1996 May;8(5):805–814. doi: 10.1105/tpc.8.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]