Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1425–1436. doi: 10.1093/genetics/157.4.1425

Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast.

R Munshi 1, K A Kandl 1, A Carr-Schmid 1, J L Whitacre 1, A E Adams 1, T G Kinzy 1
PMCID: PMC1461591  PMID: 11290701

Abstract

The translation elongation factor 1 complex (eEF1) plays a central role in protein synthesis, delivering aminoacyl-tRNAs to the elongating ribosome. The eEF1A subunit, a classic G-protein, also performs roles aside from protein synthesis. The overexpression of either eEF1A or eEF1B alpha, the catalytic subunit of the guanine nucleotide exchange factor, in Saccharomyces cerevisiae results in effects on cell growth. Here we demonstrate that overexpression of either factor does not affect the levels of the other subunit or the rate or accuracy of protein synthesis. Instead, the major effects in vivo appear to be at the level of cell morphology and budding. eEF1A overexpression results in dosage-dependent reduced budding and altered actin distribution and cellular morphology. In addition, the effects of excess eEF1A in actin mutant strains show synthetic growth defects, establishing a genetic connection between the two proteins. As the ability of eEF1A to bind and bundle actin is conserved in yeast, these results link the established ability of eEF1A to bind and bundle actin in vitro with nontranslational roles for the protein in vivo.

Full Text

The Full Text of this article is available as a PDF (468.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams A. E., Botstein D. Dominant suppressors of yeast actin mutations that are reciprocally suppressed. Genetics. 1989 Apr;121(4):675–683. doi: 10.1093/genetics/121.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benko A. L., Vaduva G., Martin N. C., Hopper A. K. Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):61–66. doi: 10.1073/pnas.97.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  4. Carr-Schmid A., Durko N., Cavallius J., Merrick W. C., Kinzy T. G. Mutations in a GTP-binding motif of eukaryotic elongation factor 1A reduce both translational fidelity and the requirement for nucleotide exchange. J Biol Chem. 1999 Oct 15;274(42):30297–30302. doi: 10.1074/jbc.274.42.30297. [DOI] [PubMed] [Google Scholar]
  5. Carr-Schmid A., Valente L., Loik V. I., Williams T., Starita L. M., Kinzy T. G. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity. Mol Cell Biol. 1999 Aug;19(8):5257–5266. doi: 10.1128/mcb.19.8.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carvalho M. D., Carvalho J. F., Merrick W. C. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes. Arch Biochem Biophys. 1984 Nov 1;234(2):603–611. doi: 10.1016/0003-9861(84)90310-2. [DOI] [PubMed] [Google Scholar]
  7. Cavallius J., Merrick W. C. Site-directed mutagenesis of yeast eEF1A. Viable mutants with altered nucleotide specificity. J Biol Chem. 1998 Oct 30;273(44):28752–28758. doi: 10.1074/jbc.273.44.28752. [DOI] [PubMed] [Google Scholar]
  8. Cavallius J., Popkie A. P., Merrick W. C. Site-directed mutants of post-translationally modified sites of yeast eEF1A using a shuttle vector containing a chromogenic switch. Biochim Biophys Acta. 1997 Feb 28;1350(3):345–358. doi: 10.1016/s0167-4781(96)00181-9. [DOI] [PubMed] [Google Scholar]
  9. Chowdhury S., Smith K. W., Gustin M. C. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J Cell Biol. 1992 Aug;118(3):561–571. doi: 10.1083/jcb.118.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. doi: 10.1016/0378-1119(92)90454-w. [DOI] [PubMed] [Google Scholar]
  11. Condeelis J. Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci. 1995 May;20(5):169–170. doi: 10.1016/s0968-0004(00)88998-7. [DOI] [PubMed] [Google Scholar]
  12. Dinman J. D., Kinzy T. G. Translational misreading: mutations in translation elongation factor 1alpha differentially affect programmed ribosomal frameshifting and drug sensitivity. RNA. 1997 Aug;3(8):870–881. [PMC free article] [PubMed] [Google Scholar]
  13. Dunn T. M., Shortle D. Null alleles of SAC7 suppress temperature-sensitive actin mutations in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2308–2314. doi: 10.1128/mcb.10.5.2308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edmonds B. T., Bell A., Wyckoff J., Condeelis J., Leyh T. S. The effect of F-actin on the binding and hydrolysis of guanine nucleotide by Dictyostelium elongation factor 1A. J Biol Chem. 1998 Apr 24;273(17):10288–10295. doi: 10.1074/jbc.273.17.10288. [DOI] [PubMed] [Google Scholar]
  15. Edmonds B. T., Murray J., Condeelis J. pH regulation of the F-actin binding properties of Dictyostelium elongation factor 1 alpha. J Biol Chem. 1995 Jun 23;270(25):15222–15230. doi: 10.1074/jbc.270.25.15222. [DOI] [PubMed] [Google Scholar]
  16. Farabaugh P. J. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J Biol Chem. 1995 May 5;270(18):10361–10364. doi: 10.1074/jbc.270.18.10361. [DOI] [PubMed] [Google Scholar]
  17. Grosshans H., Hurt E., Simos G. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev. 2000 Apr 1;14(7):830–840. [PMC free article] [PubMed] [Google Scholar]
  18. Hiraga K., Suzuki K., Tsuchiya E., Miyakawa T. Cloning and characterization of the elongation factor EF-1 beta homologue of Saccharomyces cerevisiae. EF-1 beta is essential for growth. FEBS Lett. 1993 Jan 25;316(2):165–169. doi: 10.1016/0014-5793(93)81208-h. [DOI] [PubMed] [Google Scholar]
  19. Honts J. E., Sandrock T. S., Brower S. M., O'Dell J. L., Adams A. E. Actin mutations that show suppression with fimbrin mutations identify a likely fimbrin-binding site on actin. J Cell Biol. 1994 Jul;126(2):413–422. doi: 10.1083/jcb.126.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Itano N., Hatano S. F-actin bundling protein from Physarum polycephalum: purification and its capacity for co-bundling of actin filaments and microtubules. Cell Motil Cytoskeleton. 1991;19(4):244–254. doi: 10.1002/cm.970190403. [DOI] [PubMed] [Google Scholar]
  21. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones E. W. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 1991;194:428–453. doi: 10.1016/0076-6879(91)94034-a. [DOI] [PubMed] [Google Scholar]
  23. Kambouris N. G., Burke D. J., Creutz C. E. Cloning and genetic characterization of a calcium- and phospholipid-binding protein from Saccharomyces cerevisiae that is homologous to translation elongation factor-1 gamma. Yeast. 1993 Feb;9(2):151–163. doi: 10.1002/yea.320090206. [DOI] [PubMed] [Google Scholar]
  24. Kinzy T. G., Ripmaster T. L., Woolford J. L., Jr Multiple genes encode the translation elongation factor EF-1 gamma in Saccharomyces cerevisiae. Nucleic Acids Res. 1994 Jul 11;22(13):2703–2707. doi: 10.1093/nar/22.13.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  26. Kurasawa Y., Hanyu K., Watanabe Y., Numata O. F-actin bundling activity of Tetrahymena elongation factor 1 alpha is regulated by Ca2+/calmodulin. J Biochem. 1996 Apr;119(4):791–798. doi: 10.1093/oxfordjournals.jbchem.a021309. [DOI] [PubMed] [Google Scholar]
  27. Kurasawa Y., Numata O., Katoh M., Hirano H., Chiba J., Watanabe Y. Identification of Tetrahymena 14-nm filament-associated protein as elongation factor 1 alpha. Exp Cell Res. 1992 Nov;203(1):251–258. doi: 10.1016/0014-4827(92)90062-d. [DOI] [PubMed] [Google Scholar]
  28. Liu G., Tang J., Edmonds B. T., Murray J., Levin S., Condeelis J. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Cell Biol. 1996 Nov;135(4):953–963. doi: 10.1083/jcb.135.4.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Liu H., Krizek J., Bretscher A. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics. 1992 Nov;132(3):665–673. doi: 10.1093/genetics/132.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nagata S., Nagashima K., Tsunetsugu-Yokota Y., Fujimura K., Miyazaki M., Kaziro Y. Polypeptide chain elongation factor 1 alpha (EF-1 alpha) from yeast: nucleotide sequence of one of the two genes for EF-1 alpha from Saccharomyces cerevisiae. EMBO J. 1984 Aug;3(8):1825–1830. doi: 10.1002/j.1460-2075.1984.tb02053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nash R., Tokiwa G., Anand S., Erickson K., Futcher A. B. The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 1988 Dec 20;7(13):4335–4346. doi: 10.1002/j.1460-2075.1988.tb03332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sandrock T. M., Brower S. M., Toenjes K. A., Adams A. E. Suppressor analysis of fimbrin (Sac6p) overexpression in yeast. Genetics. 1999 Apr;151(4):1287–1297. doi: 10.1093/genetics/151.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shortle D., Novick P., Botstein D. Construction and genetic characterization of temperature-sensitive mutant alleles of the yeast actin gene. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4889–4893. doi: 10.1073/pnas.81.15.4889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Song J. M., Picologlou S., Grant C. M., Firoozan M., Tuite M. F., Liebman S. Elongation factor EF-1 alpha gene dosage alters translational fidelity in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Oct;9(10):4571–4575. doi: 10.1128/mcb.9.10.4571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stapulionis R., Kolli S., Deutscher M. P. Efficient mammalian protein synthesis requires an intact F-actin system. J Biol Chem. 1997 Oct 3;272(40):24980–24986. doi: 10.1074/jbc.272.40.24980. [DOI] [PubMed] [Google Scholar]
  37. Suda M., Fukui M., Sogabe Y., Sato K., Morimatsu A., Arai R., Motegi F., Miyakawa T., Mabuchi I., Hirata D. Overproduction of elongation factor 1alpha, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast. Genes Cells. 1999 Sep;4(9):517–527. doi: 10.1046/j.1365-2443.1999.00279.x. [DOI] [PubMed] [Google Scholar]
  38. Umikawa M., Tanaka K., Kamei T., Shimizu K., Imamura H., Sasaki T., Takai Y. Interaction of Rho1p target Bni1p with F-actin-binding elongation factor 1alpha: implication in Rho1p-regulated reorganization of the actin cytoskeleton in Saccharomyces cerevisiae. Oncogene. 1998 Apr 16;16(15):2011–2016. doi: 10.1038/sj.onc.1201724. [DOI] [PubMed] [Google Scholar]
  39. Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]
  40. Wertman K. F., Drubin D. G., Botstein D. Systematic mutational analysis of the yeast ACT1 gene. Genetics. 1992 Oct;132(2):337–350. doi: 10.1093/genetics/132.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yang F., Demma M., Warren V., Dharmawardhane S., Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990 Oct 4;347(6292):494–496. doi: 10.1038/347494a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES