Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1665–1672. doi: 10.1093/genetics/157.4.1665

The mutant phenotype associated with P-element alleles of the vestigial locus in Drosophila melanogaster may be caused by a readthrough transcript initiated at the P-element promoter.

R B Hodgetts 1, S L O'Keefe 1
PMCID: PMC1461597  PMID: 11290721

Abstract

We report here the isolation of a new P-element-induced allele of the vestigial locus vg(2a33), the molecular characterization of which allows us to propose a unifying explanation of the phenotypes of the large number of vestigial P-element alleles that now exists. The first P-element allele of vestigial to be isolated was vg(21), which results in a very weak mutant wing phenotype that is suppressed in the P cytotype. By destabilizing vg(2a33) in a dysgenic cross, we isolated the vg(2a33) allele, which exhibits a moderate mutant wing phenotype and is not suppressed by the P cytotype. The new allele is characterized by a 46-bp deletion that removes the 3'-proximal copy of the 11-bp internal repeat from the P element of vg(21). To understand how this subtle difference between the two alleles leads to a rather pronounced difference in their phenotypes, we mapped both the vg and P-element transcription units present in wild type and mutants. Using both 5'-RACE and S1 protection, we found that P-element transcription is initiated 19 bp farther upstream than previously thought. Using primer extension, the start of vg transcription was determined to lie 435 bp upstream of the longest cDNA recovered to date and upstream of the P-element insertion site. Our discovery that the P element is situated within the first vg exon has prompted a reassessment of the large body of genetic data on a series of alleles derived from vg(21). Our current hypothesis to explain the degree of variation in the mutant phenotypes and their response to the P repressor invokes a critical RNA secondary structure in the vg transcript, the formation of which is hindered by a readthrough transcript initiated at the P-element promoter.

Full Text

The Full Text of this article is available as a PDF (253.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquadro C. F., Desse S. F., Bland M. M., Langley C. H., Laurie-Ahlberg C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics. 1986 Dec;114(4):1165–1190. doi: 10.1093/genetics/114.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arkhipova I. R. Promoter elements in Drosophila melanogaster revealed by sequence analysis. Genetics. 1995 Mar;139(3):1359–1369. doi: 10.1093/genetics/139.3.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campuzano S., Carramolino L., Cabrera C. V., Ruíz-Gómez M., Villares R., Boronat A., Modolell J. Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell. 1985 Feb;40(2):327–338. doi: 10.1016/0092-8674(85)90147-3. [DOI] [PubMed] [Google Scholar]
  4. Geyer P. K., Richardson K. L., Corces V. G., Green M. M. Genetic instability in Drosophila melanogaster: P-element mutagenesis by gene conversion. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6455–6459. doi: 10.1073/pnas.85.17.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heslip T. R., Hodgetts R. B. Targeted transposition at the vestigial locus of Drosophila melanogaster. Genetics. 1994 Dec;138(4):1127–1135. doi: 10.1093/genetics/138.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  7. Kaufman P. D., Doll R. F., Rio D. C. Drosophila P element transposase recognizes internal P element DNA sequences. Cell. 1989 Oct 20;59(2):359–371. doi: 10.1016/0092-8674(89)90297-3. [DOI] [PubMed] [Google Scholar]
  8. Laski F. A., Rio D. C., Rubin G. M. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell. 1986 Jan 17;44(1):7–19. doi: 10.1016/0092-8674(86)90480-0. [DOI] [PubMed] [Google Scholar]
  9. Lee C. C., Mul Y. M., Rio D. C. The Drosophila P-element KP repressor protein dimerizes and interacts with multiple sites on P-element DNA. Mol Cell Biol. 1996 Oct;16(10):5616–5622. doi: 10.1128/mcb.16.10.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lemaitre B., Coen D. P regulatory products repress in vivo the P promoter activity in P-lacZ fusion genes. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4419–4423. doi: 10.1073/pnas.88.10.4419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lemaitre B., Ronsseray S., Coen D. Maternal repression of the P element promoter in the germline of Drosophila melanogaster: a model for the P cytotype. Genetics. 1993 Sep;135(1):149–160. doi: 10.1093/genetics/135.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lo K., Smale S. T. Generality of a functional initiator consensus sequence. Gene. 1996 Dec 5;182(1-2):13–22. doi: 10.1016/s0378-1119(96)00438-6. [DOI] [PubMed] [Google Scholar]
  13. Mullins M. C., Rio D. C., Rubin G. M. cis-acting DNA sequence requirements for P-element transposition. Genes Dev. 1989 May;3(5):729–738. doi: 10.1101/gad.3.5.729. [DOI] [PubMed] [Google Scholar]
  14. Nakashima-Tanaka E. The effect of temperature and genetic background on the phenotypic expression of several vestigial strains of Drosophila melanogaster. Genetica. 1968;38(4):447–458. doi: 10.1007/BF01507475. [DOI] [PubMed] [Google Scholar]
  15. Parkhurst S. M., Corces V. G. Interactions among the gypsy transposable element and the yellow and the suppressor of hairy-wing loci in Drosophila melanogaster. Mol Cell Biol. 1986 Jan;6(1):47–53. doi: 10.1128/mcb.6.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rio D. C., Rubin G. M. Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P transposable element. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8929–8933. doi: 10.1073/pnas.85.23.8929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Robertson H. M., Engels W. R. Modified P elements that mimic the P cytotype in Drosophila melanogaster. Genetics. 1989 Dec;123(4):815–824. doi: 10.1093/genetics/123.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roche S. E., Schiff M., Rio D. C. P-element repressor autoregulation involves germ-line transcriptional repression and reduction of third intron splicing. Genes Dev. 1995 May 15;9(10):1278–1288. doi: 10.1101/gad.9.10.1278. [DOI] [PubMed] [Google Scholar]
  19. Roiha H., Rubin G. M., O'Hare K. P element insertions and rearrangements at the singed locus of Drosophila melanogaster. Genetics. 1988 May;119(1):75–83. doi: 10.1093/genetics/119.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Staveley B. E., Heslip T. R., Hodgetts R. B., Bell J. B. Protected P-element termini suggest a role for inverted-repeat-binding protein in transposase-induced gap repair in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1321–1329. doi: 10.1093/genetics/139.3.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams J. A., Atkin A. L., Bell J. B. The functional organization of the vestigial locus in Drosophila melanogaster. Mol Gen Genet. 1990 Mar;221(1):8–16. doi: 10.1007/BF00280361. [DOI] [PubMed] [Google Scholar]
  22. Williams J. A., Bell J. B., Carroll S. B. Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev. 1991 Dec;5(12B):2481–2495. doi: 10.1101/gad.5.12b.2481. [DOI] [PubMed] [Google Scholar]
  23. Williams J. A., Pappu S. S., Bell J. B. Molecular analysis of hybrid dysgenesis-induced derivatives of a P-element allele at the vg locus. Mol Cell Biol. 1988 Apr;8(4):1489–1497. doi: 10.1128/mcb.8.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES