Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1403–1412. doi: 10.1093/genetics/157.4.1403

Differential evolution of eastern equine encephalitis virus populations in response to host cell type.

L A Cooper 1, T W Scott 1
PMCID: PMC1461603  PMID: 11290699

Abstract

Arthropod-borne viruses (arboviruses) cycle between hosts in two widely separated taxonomic groups, vertebrate amplifying hosts and invertebrate vectors, both of which may separately or in concert shape the course of arbovirus evolution. To elucidate the selective pressures associated with virus replication within each portion of this two-host life cycle, the effects of host type on the growth characteristics of the New World alphavirus, eastern equine encephalitis (EEE) virus, were investigated. Multiple lineages of an ancestral EEE virus stock were repeatedly transferred through either mosquito or avian cells or in alternating passages between these two cell types. When assayed in both cell types, derived single host lineages exhibited significant differences in infectivity, growth pattern, plaque morphology, and total virus yield, demonstrating that this virus is capable of host-specific evolution. Virus lineages grown in alternation between the two cell types expressed intermediate phenotypes consistent with dual adaptation to both cellular environments. Both insect-adapted and alternated lineages greatly increased in their ability to infect insect cells. These results indicate that different selective pressures exist for virus replication within each portion of the two-host life cycle, and that alternation of hosts selects for virus populations well adapted for replication in both host systems.

Full Text

The Full Text of this article is available as a PDF (196.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baric R. S., Trent D. W., Johnston R. E. A Sindbis virus variant with a cell-determined latent period. Virology. 1981 Apr 15;110(1):237–242. doi: 10.1016/0042-6822(81)90029-5. [DOI] [PubMed] [Google Scholar]
  2. Bull J. J., Badgett M. R., Wichman H. A., Huelsenbeck J. P., Hillis D. M., Gulati A., Ho C., Molineux I. J. Exceptional convergent evolution in a virus. Genetics. 1997 Dec;147(4):1497–1507. doi: 10.1093/genetics/147.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAMBERLAIN R. W., SUDIA W. D. Mechanism of transmission of viruses by mosquitoes. Annu Rev Entomol. 1961;6:371–390. doi: 10.1146/annurev.en.06.010161.002103. [DOI] [PubMed] [Google Scholar]
  4. Cooper L. A., Sina B. J., Turell M. J., Scott T. W. Effects of initial dose on eastern equine encephalomyelitis virus dependent mortality in intrathoracically inoculated Culiseta melanura (Diptera: Culicidae). J Med Entomol. 2000 Nov;37(6):815–819. doi: 10.1603/0022-2585-37.6.815. [DOI] [PubMed] [Google Scholar]
  5. Davey M. W., Mahon R. J., Gibbs A. J. Togavirus interference in Culex annulirostris mosquitoes. J Gen Virol. 1979 Mar;42(3):641–643. doi: 10.1099/0022-1317-42-3-641. [DOI] [PubMed] [Google Scholar]
  6. Durbin R. K., Stollar V. A mutant of sindbis virus with a host-dependent defect in maturation associated with hyperglycosylation of E2. Virology. 1984 Jun;135(2):331–344. doi: 10.1016/0042-6822(84)90190-9. [DOI] [PubMed] [Google Scholar]
  7. Durbin R. K., Stollar V. Sequence analysis of the E2 gene of a hyperglycosylated, host restricted mutant of Sindbis virus and estimation of mutation rate from frequency of revertants. Virology. 1986 Oct 15;154(1):135–143. doi: 10.1016/0042-6822(86)90436-8. [DOI] [PubMed] [Google Scholar]
  8. Elena S. F., Cooper V. S., Lenski R. E. Punctuated evolution caused by selection of rare beneficial mutations. Science. 1996 Jun 21;272(5269):1802–1804. doi: 10.1126/science.272.5269.1802. [DOI] [PubMed] [Google Scholar]
  9. Gliedman J. B., Smith J. F., Brown D. T. Morphogenesis of Sindbis virus in cultured Aedes albopictus cells. J Virol. 1975 Oct;16(4):913–926. doi: 10.1128/jvi.16.4.913-926.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hardy J. L., Houk E. J., Kramer L. D., Reeves W. C. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol. 1983;28:229–262. doi: 10.1146/annurev.en.28.010183.001305. [DOI] [PubMed] [Google Scholar]
  11. Heidner H. W., Knott T. A., Johnston R. E. Differential processing of sindbis virus glycoprotein PE2 in cultured vertebrate and arthropod cells. J Virol. 1996 Mar;70(3):2069–2073. doi: 10.1128/jvi.70.3.2069-2073.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hertz J. M., Huang H. V. Host-dependent evolution of the Sindbis virus promoter for subgenomic mRNA synthesis. J Virol. 1995 Dec;69(12):7775–7781. doi: 10.1128/jvi.69.12.7775-7781.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holland J. J., de la Torre J. C., Clarke D. K., Duarte E. Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol. 1991 Jun;65(6):2960–2967. doi: 10.1128/jvi.65.6.2960-2967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Igarashi A. Isolation of a Singh's Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol. 1978 Sep;40(3):531–544. doi: 10.1099/0022-1317-40-3-531. [DOI] [PubMed] [Google Scholar]
  15. Johnston R. E., Smith J. F. Selection for accelerated penetration in cell culture coselects for attenuated mutants of Venezuelan equine encephalitis virus. Virology. 1988 Feb;162(2):437–443. doi: 10.1016/0042-6822(88)90484-9. [DOI] [PubMed] [Google Scholar]
  16. Karpf A. R., Lenches E., Strauss E. G., Strauss J. H., Brown D. T. Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J Virol. 1997 Sep;71(9):7119–7123. doi: 10.1128/jvi.71.9.7119-7123.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kowal K. J., Stollar V. Temperature-sensitive host-dependent mutants of Sindbis virus. Virology. 1981 Oct 15;114(1):140–148. doi: 10.1016/0042-6822(81)90260-9. [DOI] [PubMed] [Google Scholar]
  18. Ludwig G. V., Kondig J. P., Smith J. F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J Virol. 1996 Aug;70(8):5592–5599. doi: 10.1128/jvi.70.8.5592-5599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luukkonen A., von Bonsdorff C. H., Renkonen O. Characterization of Semliki Forest virus grown in mosquito cells. Comparison with the virus from hamster cells. Virology. 1977 May 1;78(1):331–335. doi: 10.1016/0042-6822(77)90105-2. [DOI] [PubMed] [Google Scholar]
  20. Marcovici M., Prier J. E. Enhancement of St. Louis arbovirus plaque formation by neutral red. J Virol. 1968 Mar;2(3):178–181. doi: 10.1128/jvi.2.3.178-181.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Novella I. S., Clarke D. K., Quer J., Duarte E. A., Lee C. H., Weaver S. C., Elena S. F., Moya A., Domingo E., Holland J. J. Extreme fitness differences in mammalian and insect hosts after continuous replication of vesicular stomatitis virus in sandfly cells. J Virol. 1995 Nov;69(11):6805–6809. doi: 10.1128/jvi.69.11.6805-6809.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Novella I. S., Hershey C. L., Escarmis C., Domingo E., Holland J. J. Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. J Mol Biol. 1999 Apr 2;287(3):459–465. doi: 10.1006/jmbi.1999.2635. [DOI] [PubMed] [Google Scholar]
  23. Olmsted R. A., Baric R. S., Sawyer B. A., Johnston R. E. Sindbis virus mutants selected for rapid growth in cell culture display attenuated virulence in animals. Science. 1984 Jul 27;225(4660):424–427. doi: 10.1126/science.6204381. [DOI] [PubMed] [Google Scholar]
  24. Peleg J., Stollar V. Homologous interference in Aedes aegypti cell cultures infected with Sindbis virus. Arch Gesamte Virusforsch. 1974;45(4):309–318. doi: 10.1007/BF01242874. [DOI] [PubMed] [Google Scholar]
  25. Poidinger M., Roy S., Hall R. A., Turley P. J., Scherret J. H., Lindsay M. D., Broom A. K., Mackenzie J. S. Genetic stability among temporally and geographically diverse isolates of Barmah Forest virus. Am J Trop Med Hyg. 1997 Aug;57(2):230–234. doi: 10.4269/ajtmh.1997.57.230. [DOI] [PubMed] [Google Scholar]
  26. Renz D., Brown D. T. Characteristics of Sindbis virus temperature-sensitive mutants in cultured BHK-21 and Aedes albopictus (Mosquito) cells. J Virol. 1976 Sep;19(3):775–781. doi: 10.1128/jvi.19.3.775-781.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roehrig J. T., Hunt A. R., Chang G. J., Sheik B., Bolin R. A., Tsai T. F., Trent D. W. Identification of monoclonal antibodies capable of differentiating antigenic varieties of eastern equine encephalitis viruses. Am J Trop Med Hyg. 1990 Apr;42(4):394–398. doi: 10.4269/ajtmh.1990.42.394. [DOI] [PubMed] [Google Scholar]
  28. Sarver N., Stollar V. Sindbis virus-induced cytopathic effect in clones of Aedes albopictus (Singh) cells. Virology. 1977 Jul 15;80(2):390–400. doi: 10.1016/s0042-6822(77)80014-7. [DOI] [PubMed] [Google Scholar]
  29. Scott T. W., Burrage T. G. Rapid infection of salivary glands in Culiseta melanura with eastern equine encephalitis virus: an electron microscopic study. Am J Trop Med Hyg. 1984 Sep;33(5):961–964. doi: 10.4269/ajtmh.1984.33.961. [DOI] [PubMed] [Google Scholar]
  30. Scott T. W., Weaver S. C. Eastern equine encephalomyelitis virus: epidemiology and evolution of mosquito transmission. Adv Virus Res. 1989;37:277–328. doi: 10.1016/s0065-3527(08)60838-6. [DOI] [PubMed] [Google Scholar]
  31. Sevilla N., Ruiz-Jarabo C. M., Gómez-Mariano G., Baranowski E., Domingo E. An RNA virus can adapt to the multiplicity of infection. J Gen Virol. 1998 Dec;79(Pt 12):2971–2980. doi: 10.1099/0022-1317-79-12-2971. [DOI] [PubMed] [Google Scholar]
  32. Sevilla N., Ruiz-Jarabo C. M., Gómez-Mariano G., Baranowski E., Domingo E. An RNA virus can adapt to the multiplicity of infection. J Gen Virol. 1998 Dec;79(Pt 12):2971–2980. doi: 10.1099/0022-1317-79-12-2971. [DOI] [PubMed] [Google Scholar]
  33. Stollar V., Shenk T. E. Homologous viral interference in Aedes albopictus cultures chronically infected with Sindbis virus. J Virol. 1973 Apr;11(4):592–595. doi: 10.1128/jvi.11.4.592-595.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Strizki J. M., Repik P. M. Structural protein relationships among eastern equine encephalitis viruses. J Gen Virol. 1994 Nov;75(Pt 11):2897–2909. doi: 10.1099/0022-1317-75-11-2897. [DOI] [PubMed] [Google Scholar]
  36. Turner P. E., Burch C. L., Hanley K. A., Chao L. Hybrid frequencies confirm limit to coinfection in the RNA bacteriophage phi6. J Virol. 1999 Mar;73(3):2420–2424. doi: 10.1128/jvi.73.3.2420-2424.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Turner P. E., Chao L. Sex and the evolution of intrahost competition in RNA virus phi6. Genetics. 1998 Oct;150(2):523–532. doi: 10.1093/genetics/150.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weaver S. C., Brault A. C., Kang W., Holland J. J. Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J Virol. 1999 May;73(5):4316–4326. doi: 10.1128/jvi.73.5.4316-4326.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weaver S. C., Rico-Hesse R., Scott T. W. Genetic diversity and slow rates of evolution in New World alphaviruses. Curr Top Microbiol Immunol. 1992;176:99–117. doi: 10.1007/978-3-642-77011-1_7. [DOI] [PubMed] [Google Scholar]
  40. Weaver S. C., Scott T. W., Rico-Hesse R. Molecular evolution of eastern equine encephalomyelitis virus in North America. Virology. 1991 Jun;182(2):774–784. doi: 10.1016/0042-6822(91)90618-l. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES