Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1503–1512. doi: 10.1093/genetics/157.4.1503

The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans.

R A Khalaf 1, R S Zitomer 1
PMCID: PMC1461606  PMID: 11290707

Abstract

We have identified a repressor of hyphal growth in the pathogenic yeast Candida albicans. The gene was originally cloned in an attempt to characterize the homologue of the Saccharomyces cerevisiae Rox1, a repressor of hypoxic genes. Rox1 is an HMG-domain, DNA binding protein with a repression domain that recruits the Tup1/Ssn6 general repression complex to achieve repression. The C. albicans clone also encoded an HMG protein that was capable of repression of a hypoxic gene in a S. cerevisiae rox1 deletion strain. Gel retardation experiments using the purified HMG domain of this protein demonstrated that it was capable of binding specifically to a S. cerevisiae hypoxic operator DNA sequence. These data seemed to indicate that this gene encoded a hypoxic repressor. However, surprisingly, when a homozygous deletion was generated in C. albicans, the cells became constitutive for hyphal growth. This phenotype was rescued by the reintroduction of the wild-type gene on a plasmid, proving that the hyphal growth phenotype was due to the deletion and not a secondary mutation. Furthermore, oxygen repression of the hypoxic HEM13 gene was not affected by the deletion nor was this putative ROX1 gene regulated positively by oxygen as is the case for the S. cerevisiae gene. All these data indicate that this gene, now designated RFG1 for Repressor of Filamentous Growth, is a repressor of genes required for hyphal growth and not a hypoxic repressor.

Full Text

The Full Text of this article is available as a PDF (312.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amillet J. M., Buisson N., Labbe-Bois R. Characterization of an upstream activation sequence and two Rox1p-responsive sites controlling the induction of the yeast HEM13 gene by oxygen and heme deficiency. J Biol Chem. 1996 Oct 4;271(40):24425–24432. doi: 10.1074/jbc.271.40.24425. [DOI] [PubMed] [Google Scholar]
  2. Balasubramanian B., Lowry C. V., Zitomer R. S. The Rox1 repressor of the Saccharomyces cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Mol Cell Biol. 1993 Oct;13(10):6071–6078. doi: 10.1128/mcb.13.10.6071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun B. R., Head W. S., Wang M. X., Johnson A. D. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics. 2000 Sep;156(1):31–44. doi: 10.1093/genetics/156.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun B. R., Johnson A. D. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science. 1997 Jul 4;277(5322):105–109. doi: 10.1126/science.277.5322.105. [DOI] [PubMed] [Google Scholar]
  5. Braun B. R., Johnson A. D. TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. Genetics. 2000 May;155(1):57–67. doi: 10.1093/genetics/155.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown A. J., Barelle C. J., Budge S., Duncan J., Harris S., Lee P. R., Leng P., Macaskill S., Abdul Murad A. M., Ramsdale M. Gene regulation during morphogenesis in Candida albicans. Contrib Microbiol. 2000;5:112–125. doi: 10.1159/000060347. [DOI] [PubMed] [Google Scholar]
  7. Corner B. E., Magee P. T. Candida pathogenesis: unravelling the threads of infection. Curr Biol. 1997 Nov 1;7(11):R691–R694. doi: 10.1016/s0960-9822(06)00357-5. [DOI] [PubMed] [Google Scholar]
  8. Deckert J., Khalaf R. A., Hwang S. M., Zitomer R. S. Characterization of the DNA binding and bending HMG domain of the yeast hypoxic repressor Rox1. Nucleic Acids Res. 1999 Sep 1;27(17):3518–3526. doi: 10.1093/nar/27.17.3518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deckert J., Perini R., Balasubramanian B., Zitomer R. S. Multiple elements and auto-repression regulate Rox1, a repressor of hypoxic genes in Saccharomyces cerevisiae. Genetics. 1995 Mar;139(3):1149–1158. doi: 10.1093/genetics/139.3.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deckert J., Rodriguez Torres A. M., Simon J. T., Zitomer R. S. Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Nov;15(11):6109–6117. doi: 10.1128/mcb.15.11.6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deckert J., Torres A. M., Hwang S. M., Kastaniotis A. J., Zitomer R. S. The anatomy of a hypoxic operator in Saccharomyces cerevisiae. Genetics. 1998 Dec;150(4):1429–1441. doi: 10.1093/genetics/150.4.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elledge S. J., Zhou Z., Allen J. B., Navas T. A. DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays. 1993 May;15(5):333–339. doi: 10.1002/bies.950150507. [DOI] [PubMed] [Google Scholar]
  13. Friesen H., Hepworth S. R., Segall J. An Ssn6-Tup1-dependent negative regulatory element controls sporulation-specific expression of DIT1 and DIT2 in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Jan;17(1):123–134. doi: 10.1128/mcb.17.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  15. Grosschedl R., Giese K., Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994 Mar;10(3):94–100. doi: 10.1016/0168-9525(94)90232-1. [DOI] [PubMed] [Google Scholar]
  16. Kastaniotis A. J., Mennella T. A., Konrad C., Torres A. M., Zitomer R. S. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast. Mol Cell Biol. 2000 Oct;20(19):7088–7098. doi: 10.1128/mcb.20.19.7088-7098.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kastaniotis A. J., Zitomer R. S. Rox1 mediated repression. Oxygen dependent repression in yeast. Adv Exp Med Biol. 2000;475:185–195. [PubMed] [Google Scholar]
  18. Keleher C. A., Redd M. J., Schultz J., Carlson M., Johnson A. D. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell. 1992 Feb 21;68(4):709–719. doi: 10.1016/0092-8674(92)90146-4. [DOI] [PubMed] [Google Scholar]
  19. Keng T. HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Jun;12(6):2616–2623. doi: 10.1128/mcb.12.6.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kobayashi S. D., Cutler J. E. Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol. 1998 Mar;6(3):92–94. doi: 10.1016/s0966-842x(98)01218-9. [DOI] [PubMed] [Google Scholar]
  21. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997 Sep 5;90(5):939–949. doi: 10.1016/s0092-8674(00)80358-x. [DOI] [PubMed] [Google Scholar]
  22. Lowry C. V., Zitomer R. S. Oxygen regulation of anaerobic and aerobic genes mediated by a common factor in yeast. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6129–6133. doi: 10.1073/pnas.81.19.6129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Merson-Davies L. A., Odds F. C. A morphology index for characterization of cell shape in Candida albicans. J Gen Microbiol. 1989 Nov;135(11):3143–3152. doi: 10.1099/00221287-135-11-3143. [DOI] [PubMed] [Google Scholar]
  24. Mizuno T., Nakazawa N., Remgsamrarn P., Kunoh T., Oshima Y., Harashima S. The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae. Curr Genet. 1998 Apr;33(4):239–247. doi: 10.1007/s002940050332. [DOI] [PubMed] [Google Scholar]
  25. Mukai Y., Harashima S., Oshima Y. AAR1/TUP1 protein, with a structure similar to that of the beta subunit of G proteins, is required for a1-alpha 2 and alpha 2 repression in cell type control of Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jul;11(7):3773–3779. doi: 10.1128/mcb.11.7.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Márquez J. A., Pascual-Ahuir A., Proft M., Serrano R. The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO J. 1998 May 1;17(9):2543–2553. doi: 10.1093/emboj/17.9.2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Negredo A., Monteoliva L., Gil C., Pla J., Nombela C. Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology. 1997 Feb;143(Pt 2):297–302. doi: 10.1099/00221287-143-2-297. [DOI] [PubMed] [Google Scholar]
  28. Treitel M. A., Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132–3136. doi: 10.1073/pnas.92.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tzamarias D., Struhl K. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 1995 Apr 1;9(7):821–831. doi: 10.1101/gad.9.7.821. [DOI] [PubMed] [Google Scholar]
  30. Tzamarias D., Struhl K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature. 1994 Jun 30;369(6483):758–761. doi: 10.1038/369758a0. [DOI] [PubMed] [Google Scholar]
  31. Williams F. E., Varanasi U., Trumbly R. J. The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol Cell Biol. 1991 Jun;11(6):3307–3316. doi: 10.1128/mcb.11.6.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson R. B., Davis D., Mitchell A. P. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol. 1999 Mar;181(6):1868–1874. doi: 10.1128/jb.181.6.1868-1874.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zagorec M., Buhler J. M., Treich I., Keng T., Guarente L., Labbe-Bois R. Isolation, sequence, and regulation by oxygen of the yeast HEM13 gene coding for coproporphyrinogen oxidase. J Biol Chem. 1988 Jul 15;263(20):9718–9724. [PubMed] [Google Scholar]
  34. Zhang M., Rosenblum-Vos L. S., Lowry C. V., Boakye K. A., Zitomer R. S. A yeast protein with homology to the beta-subunit of G proteins is involved in control of heme-regulated and catabolite-repressed genes. Gene. 1991 Jan 15;97(2):153–161. doi: 10.1016/0378-1119(91)90047-f. [DOI] [PubMed] [Google Scholar]
  35. Zitomer R. S., Carrico P., Deckert J. Regulation of hypoxic gene expression in yeast. Kidney Int. 1997 Feb;51(2):507–513. doi: 10.1038/ki.1997.71. [DOI] [PubMed] [Google Scholar]
  36. Zitomer R. S., Lowry C. V. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev. 1992 Mar;56(1):1–11. doi: 10.1128/mr.56.1.1-11.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES