Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):357–367. doi: 10.1093/genetics/158.1.357

Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes.

H J Cordell 1, J A Todd 1, N J Hill 1, C J Lord 1, P A Lyons 1, L B Peterson 1, L S Wicker 1, D G Clayton 1
PMCID: PMC1461617  PMID: 11333244

Abstract

In general, common diseases do not follow a Mendelian inheritance pattern. To identify disease mechanisms and etiology, their genetic dissection may be assisted by evaluation of linkage in mouse models of human disease. Statistical modeling of multiple-locus linkage data from the nonobese diabetic (NOD) mouse model of type 1 diabetes has previously provided evidence for epistasis between alleles of several Idd (insulin-dependent diabetes) loci. The construction of NOD congenic strains containing selected segments of the diabetes-resistant strain genome allows analysis of the joint effects of alleles of different loci in isolation, without the complication of other segregating Idd loci. In this article, we analyze data from congenic strains carrying two chromosome intervals (a double congenic strain) for two pairs of loci: Idd3 and Idd10 and Idd3 and Idd5. The joint action of both pairs is consistent with models of additivity on either the log odds of the penetrance, or the liability scale, rather than with the previously proposed multiplicative model of epistasis. For Idd3 and Idd5 we would also not reject a model of additivity on the penetrance scale, which might indicate a disease model mediated by more than one pathway leading to beta-cell destruction and development of diabetes. However, there has been confusion between different definitions of interaction or epistasis as used in the biological, statistical, epidemiological, and quantitative and human genetics fields. The degree to which statistical analyses can elucidate underlying biologic mechanisms may be limited and may require prior knowledge of the underlying etiology.

Full Text

The Full Text of this article is available as a PDF (237.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blot W. J., Day N. E. Synergism and interaction: are they equivalent? Am J Epidemiol. 1979 Jul;110(1):99–100. doi: 10.1093/oxfordjournals.aje.a112793. [DOI] [PubMed] [Google Scholar]
  2. Breslow N. E., Storer B. E. General relative risk functions for case-control studies. Am J Epidemiol. 1985 Jul;122(1):149–162. doi: 10.1093/oxfordjournals.aje.a114074. [DOI] [PubMed] [Google Scholar]
  3. Cho J. H., Nicolae D. L., Gold L. H., Fields C. T., LaBuda M. C., Rohal P. M., Pickles M. R., Qin L., Fu Y., Mann J. S. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7502–7507. doi: 10.1073/pnas.95.13.7502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cockerham C. C., Zeng Z. B. Design III with marker loci. Genetics. 1996 Jul;143(3):1437–1456. doi: 10.1093/genetics/143.3.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cordell H. J., Todd J. A., Bennett S. T., Kawaguchi Y., Farrall M. Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes. Am J Hum Genet. 1995 Oct;57(4):920–934. [PMC free article] [PubMed] [Google Scholar]
  6. Cordell H. J., Wedig G. C., Jacobs K. B., Elston R. C. Multilocus linkage tests based on affected relative pairs. Am J Hum Genet. 2000 Mar 21;66(4):1273–1286. doi: 10.1086/302847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox N. J., Frigge M., Nicolae D. L., Concannon P., Hanis C. L., Bell G. I., Kong A. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nat Genet. 1999 Feb;21(2):213–215. doi: 10.1038/6002. [DOI] [PubMed] [Google Scholar]
  8. Denny P., Lord C. J., Hill N. J., Goy J. V., Levy E. R., Podolin P. L., Peterson L. B., Wicker L. S., Todd J. A., Lyons P. A. Mapping of the IDDM locus Idd3 to a 0.35-cM interval containing the interleukin-2 gene. Diabetes. 1997 Apr;46(4):695–700. doi: 10.2337/diab.46.4.695. [DOI] [PubMed] [Google Scholar]
  9. Fijneman R. J., de Vries S. S., Jansen R. C., Demant P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat Genet. 1996 Dec;14(4):465–467. doi: 10.1038/ng1296-465. [DOI] [PubMed] [Google Scholar]
  10. Fox C. J., Paterson A. D., Mortin-Toth S. M., Danska J. S. Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet. 2000 Jun 9;67(1):67–81. doi: 10.1086/302995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frankel W. N., Schork N. J. Who's afraid of epistasis? Nat Genet. 1996 Dec;14(4):371–373. doi: 10.1038/ng1296-371. [DOI] [PubMed] [Google Scholar]
  12. Ghosh S., Palmer S. M., Rodrigues N. R., Cordell H. J., Hearne C. M., Cornall R. J., Prins J. B., McShane P., Lathrop G. M., Peterson L. B. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet. 1993 Aug;4(4):404–409. doi: 10.1038/ng0893-404. [DOI] [PubMed] [Google Scholar]
  13. Hill N. J., Lyons P. A., Armitage N., Todd J. A., Wicker L. S., Peterson L. B. NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes. 2000 Oct;49(10):1744–1747. doi: 10.2337/diabetes.49.10.1744. [DOI] [PubMed] [Google Scholar]
  14. Hodge S. E. Some epistatic two-locus models of disease. I. Relative risks and identity-by-descent distributions in affected sib pairs. Am J Hum Genet. 1981 May;33(3):381–395. [PMC free article] [PubMed] [Google Scholar]
  15. Leal S. M., Ott J. Effects of stratification in the analysis of affected-sib-pair data: benefits and costs. Am J Hum Genet. 2000 Feb;66(2):567–575. doi: 10.1086/302748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Makino S., Kunimoto K., Muraoka Y., Mizushima Y., Katagiri K., Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980 Jan;29(1):1–13. doi: 10.1538/expanim1978.29.1_1. [DOI] [PubMed] [Google Scholar]
  17. Mohan C., Morel L., Yang P., Watanabe H., Croker B., Gilkeson G., Wakeland E. K. Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest. 1999 Jun;103(12):1685–1695. doi: 10.1172/JCI5827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neuman R. J., Rice J. P. Two-locus models of disease. Genet Epidemiol. 1992;9(5):347–365. doi: 10.1002/gepi.1370090506. [DOI] [PubMed] [Google Scholar]
  19. Norton B., Pearson E. S. A note on the background to, and refereeing of, R. A. Fisher's 1918 paper 'On the correlation between relatives on the supposition of Mendelian inheritance'. Notes Rec R Soc Lond. 1976 Jul;31(1):151–162. doi: 10.1098/rsnr.1976.0005. [DOI] [PubMed] [Google Scholar]
  20. Podolin P. L., Denny P., Lord C. J., Hill N. J., Todd J. A., Peterson L. B., Wicker L. S., Lyons P. A. Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1. J Immunol. 1997 Aug 15;159(4):1835–1843. [PubMed] [Google Scholar]
  21. Rapp J. P., Garrett M. R., Deng A. Y. Construction of a double congenic strain to prove an epistatic interaction on blood pressure between rat chromosomes 2 and 10. J Clin Invest. 1998 Apr 15;101(8):1591–1595. doi: 10.1172/JCI2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Risch N., Ghosh S., Todd J. A. Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Sep;53(3):702–714. [PMC free article] [PubMed] [Google Scholar]
  23. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet. 1990 Feb;46(2):222–228. [PMC free article] [PubMed] [Google Scholar]
  24. Rothman K. J., Greenland S., Walker A. M. Concepts of interaction. Am J Epidemiol. 1980 Oct;112(4):467–470. doi: 10.1093/oxfordjournals.aje.a113015. [DOI] [PubMed] [Google Scholar]
  25. Rothman K., Keller A. The effect of joint exposure to alcohol and tobacco on risk of cancer of the mouth and pharynx. J Chronic Dis. 1972 Dec;25(12):711–716. doi: 10.1016/0021-9681(72)90006-9. [DOI] [PubMed] [Google Scholar]
  26. Schork N. J., Boehnke M., Terwilliger J. D., Ott J. Two-trait-locus linkage analysis: a powerful strategy for mapping complex genetic traits. Am J Hum Genet. 1993 Nov;53(5):1127–1136. [PMC free article] [PubMed] [Google Scholar]
  27. Siemiatycki J., Thomas D. C. Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol. 1981 Dec;10(4):383–387. doi: 10.1093/ije/10.4.383. [DOI] [PubMed] [Google Scholar]
  28. Thompson W. D. Effect modification and the limits of biological inference from epidemiologic data. J Clin Epidemiol. 1991;44(3):221–232. doi: 10.1016/0895-4356(91)90033-6. [DOI] [PubMed] [Google Scholar]
  29. Weber K., Eisman R., Morey L., Patty A., Sparks J., Tausek M., Zeng Z. B. An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster. Genetics. 1999 Oct;153(2):773–786. doi: 10.1093/genetics/153.2.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wicker L. S., Todd J. A., Prins J. B., Podolin P. L., Renjilian R. J., Peterson L. B. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med. 1994 Nov 1;180(5):1705–1713. doi: 10.1084/jem.180.5.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wright S. An Analysis of Variability in Number of Digits in an Inbred Strain of Guinea Pigs. Genetics. 1934 Nov;19(6):506–536. doi: 10.1093/genetics/19.6.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wright S. The Results of Crosses between Inbred Strains of Guinea Pigs, Differing in Number of Digits. Genetics. 1934 Nov;19(6):537–551. doi: 10.1093/genetics/19.6.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yui M. A., Muralidharan K., Moreno-Altamirano B., Perrin G., Chestnut K., Wakeland E. K. Production of congenic mouse strains carrying NOD-derived diabetogenic genetic intervals: an approach for the genetic dissection of complex traits. Mamm Genome. 1996 May;7(5):331–334. doi: 10.1007/s003359900097. [DOI] [PubMed] [Google Scholar]
  34. Zeng Z. B., Liu J., Stam L. F., Kao C. H., Mercer J. M., Laurie C. C. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics. 2000 Jan;154(1):299–310. doi: 10.1093/genetics/154.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES