Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):167–176. doi: 10.1093/genetics/158.1.167

Protosilencers in Saccharomyces cerevisiae subtelomeric regions.

E Lebrun 1, E Revardel 1, C Boscheron 1, R Li 1, E Gilson 1, G Fourel 1
PMCID: PMC1461618  PMID: 11333227

Abstract

Saccharomyces cerevisiae subtelomeric repeats contain silencing elements such as the core X sequence, which is present at all chromosome ends. When transplaced at HML, core X can enhance the action of a distant silencer without acting as a silencer on its own, thus fulfilling the functional definition of a protosilencer. Here we show that an ACS motif and an Abf1p-binding site participate in the silencing capacity of core X and that their effects are additive. In addition, in a variety of settings, core X was found to bring about substantial gene repression only when a low level of silencing was already detectable in its absence. Adjoining an X-STAR sequence, which naturally abuts core X in subtelomeric regions, did not improve the silencing capacity of core X. We propose that protosilencers play a major role in a variety of silencing phenomena, as is the case for core X, which acts as a silencing relay, prolonging silencing propagation away from telomeres.

Full Text

The Full Text of this article is available as a PDF (437.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham J., Nasmyth K. A., Strathern J. N., Klar A. J., Hicks J. B. Regulation of mating-type information in yeast. Negative control requiring sequences both 5' and 3' to the regulated region. J Mol Biol. 1984 Jul 5;176(3):307–331. doi: 10.1016/0022-2836(84)90492-3. [DOI] [PubMed] [Google Scholar]
  2. Ayoub N., Goldshmidt I., Cohen A. Position effect variegation at the mating-type locus of fission yeast: a cis-acting element inhibits covariegated expression of genes in the silent and expressed domains. Genetics. 1999 Jun;152(2):495–508. doi: 10.1093/genetics/152.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayoub N., Goldshmidt I., Lyakhovetsky R., Cohen A. A fission yeast repression element cooperates with centromere-like sequences and defines a mat silent domain boundary. Genetics. 2000 Nov;156(3):983–994. doi: 10.1093/genetics/156.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bailey J. A., Carrel L., Chakravarti A., Eichler E. E. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6634–6639. doi: 10.1073/pnas.97.12.6634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boeke J. D., LaCroute F., Fink G. R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. doi: 10.1007/BF00330984. [DOI] [PubMed] [Google Scholar]
  6. Boscheron C., Maillet L., Marcand S., Tsai-Pflugfelder M., Gasser S. M., Gilson E. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus. EMBO J. 1996 May 1;15(9):2184–2195. [PMC free article] [PubMed] [Google Scholar]
  7. Brand A. H., Breeden L., Abraham J., Sternglanz R., Nasmyth K. Characterization of a "silencer" in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell. 1985 May;41(1):41–48. doi: 10.1016/0092-8674(85)90059-5. [DOI] [PubMed] [Google Scholar]
  8. Bryk M., Banerjee M., Murphy M., Knudsen K. E., Garfinkel D. J., Curcio M. J. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 1997 Jan 15;11(2):255–269. doi: 10.1101/gad.11.2.255. [DOI] [PubMed] [Google Scholar]
  9. Buck S. W., Shore D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 1995 Feb 1;9(3):370–384. doi: 10.1101/gad.9.3.370. [DOI] [PubMed] [Google Scholar]
  10. Cheng T. H., Gartenberg M. R. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev. 2000 Feb 15;14(4):452–463. [PMC free article] [PubMed] [Google Scholar]
  11. Chi M. H., Shore D. SUM1-1, a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating-type loci and decreases chromosome stability. Mol Cell Biol. 1996 Aug;16(8):4281–4294. doi: 10.1128/mcb.16.8.4281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donze D., Adams C. R., Rine J., Kamakaka R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 1999 Mar 15;13(6):698–708. doi: 10.1101/gad.13.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dorer D. R., Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell. 1994 Jul 1;77(7):993–1002. doi: 10.1016/0092-8674(94)90439-1. [DOI] [PubMed] [Google Scholar]
  14. Dorer D. R., Henikoff S. Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics. 1997 Nov;147(3):1181–1190. doi: 10.1093/genetics/147.3.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dula M. L., Holmes S. G. MGA2 and SPT23 are modifiers of transcriptional silencing in yeast. Genetics. 2000 Nov;156(3):933–941. doi: 10.1093/genetics/156.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fanti L., Dorer D. R., Berloco M., Henikoff S., Pimpinelli S. Heterochromatin protein 1 binds transgene arrays. Chromosoma. 1998 Nov;107(5):286–292. doi: 10.1007/s004120050310. [DOI] [PubMed] [Google Scholar]
  17. Feldman J. B., Hicks J. B., Broach J. R. Identification of sites required for repression of a silent mating type locus in yeast. J Mol Biol. 1984 Oct 5;178(4):815–834. doi: 10.1016/0022-2836(84)90313-9. [DOI] [PubMed] [Google Scholar]
  18. Fourel G., Boscheron C., Revardel E., Lebrun E., Hu Y. F., Simmen K. C., Müller K., Li R., Mermod N., Gilson E. An activation-independent role of transcription factors in insulator function. EMBO Rep. 2001 Feb;2(2):124–132. doi: 10.1093/embo-reports/kve024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fourel G., Revardel E., Koering C. E., Gilson E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 1999 May 4;18(9):2522–2537. doi: 10.1093/emboj/18.9.2522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Giesman D., Best L., Tatchell K. The role of RAP1 in the regulation of the MAT alpha locus. Mol Cell Biol. 1991 Feb;11(2):1069–1079. doi: 10.1128/mcb.11.2.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holmes S. G., Rose A. B., Steuerle K., Saez E., Sayegh S., Lee Y. M., Broach J. R. Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics. 1997 Mar;145(3):605–614. doi: 10.1093/genetics/145.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kadosh D., Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell. 1997 May 2;89(3):365–371. doi: 10.1016/s0092-8674(00)80217-2. [DOI] [PubMed] [Google Scholar]
  23. Kmita M., van Der Hoeven F., Zákány J., Krumlauf R., Duboule D. Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev. 2000 Jan 15;14(2):198–211. [PMC free article] [PubMed] [Google Scholar]
  24. Koering C. E., Fourel G., Binet-Brasselet E., Laroche T., Klein F., Gilson E. Identification of high affinity Tbf1p-binding sites within the budding yeast genome. Nucleic Acids Res. 2000 Jul 1;28(13):2519–2526. doi: 10.1093/nar/28.13.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kondo T., Duboule D. Breaking colinearity in the mouse HoxD complex. Cell. 1999 Apr 30;97(3):407–417. doi: 10.1016/s0092-8674(00)80749-7. [DOI] [PubMed] [Google Scholar]
  26. Kondo T., Zákány J., Duboule D. Control of colinearity in AbdB genes of the mouse HoxD complex. Mol Cell. 1998 Jan;1(2):289–300. doi: 10.1016/s1097-2765(00)80029-5. [DOI] [PubMed] [Google Scholar]
  27. Lin C. I., Livi G. P., Ivy J. M., Klar A. J. Extragenic suppressors of mar2(sir3) mutations in Saccharomyces cerevisiae. Genetics. 1990 Jun;125(2):321–331. doi: 10.1093/genetics/125.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Louis E. J., Naumova E. S., Lee A., Naumov G., Haber J. E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics. 1994 Mar;136(3):789–802. doi: 10.1093/genetics/136.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lustig A. J. Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev. 1998 Apr;8(2):233–239. doi: 10.1016/s0959-437x(98)80146-9. [DOI] [PubMed] [Google Scholar]
  30. Lyon M. F. LINE-1 elements and X chromosome inactivation: a function for "junk" DNA? Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6248–6249. doi: 10.1073/pnas.97.12.6248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mahoney D. J., Broach J. R. The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers. Mol Cell Biol. 1989 Nov;9(11):4621–4630. doi: 10.1128/mcb.9.11.4621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maillet L., Boscheron C., Gotta M., Marcand S., Gilson E., Gasser S. M. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 1996 Jul 15;10(14):1796–1811. doi: 10.1101/gad.10.14.1796. [DOI] [PubMed] [Google Scholar]
  33. Martin S. G., Laroche T., Suka N., Grunstein M., Gasser S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell. 1999 May 28;97(5):621–633. doi: 10.1016/s0092-8674(00)80773-4. [DOI] [PubMed] [Google Scholar]
  34. McNally F. J., Rine J. A synthetic silencer mediates SIR-dependent functions in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Nov;11(11):5648–5659. doi: 10.1128/mcb.11.11.5648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mihaly J., Hogga I., Gausz J., Gyurkovics H., Karch F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development. 1997 May;124(9):1809–1820. doi: 10.1242/dev.124.9.1809. [DOI] [PubMed] [Google Scholar]
  36. Pryde F. E., Louis E. J. Limitations of silencing at native yeast telomeres. EMBO J. 1999 May 4;18(9):2538–2550. doi: 10.1093/emboj/18.9.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Renauld H., Aparicio O. M., Zierath P. D., Billington B. L., Chhablani S. K., Gottschling D. E. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 1993 Jul;7(7A):1133–1145. doi: 10.1101/gad.7.7a.1133. [DOI] [PubMed] [Google Scholar]
  38. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Srivastava M., Hsieh S., Grinberg A., Williams-Simons L., Huang S. P., Pfeifer K. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev. 2000 May 15;14(10):1186–1195. [PMC free article] [PubMed] [Google Scholar]
  40. Stevenson J. B., Gottschling D. E. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 1999 Jan 15;13(2):146–151. doi: 10.1101/gad.13.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strutt H., Cavalli G., Paro R. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 1997 Jun 16;16(12):3621–3632. doi: 10.1093/emboj/16.12.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Talbert P. B., Henikoff S. A reexamination of spreading of position-effect variegation in the white-roughest region of Drosophila melanogaster. Genetics. 2000 Jan;154(1):259–272. doi: 10.1093/genetics/154.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thon G., Bjerling K. P., Nielsen I. S. Localization and properties of a silencing element near the mat3-M mating-type cassette of Schizosaccharomyces pombe. Genetics. 1999 Mar;151(3):945–963. doi: 10.1093/genetics/151.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Triolo T., Sternglanz R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature. 1996 May 16;381(6579):251–253. doi: 10.1038/381251a0. [DOI] [PubMed] [Google Scholar]
  45. Vega-Palas M. A., Venditti S., Di Mauro E. Telomeric transcriptional silencing in a natural context. Nat Genet. 1997 Mar;15(3):232–233. doi: 10.1038/ng0397-232. [DOI] [PubMed] [Google Scholar]
  46. van der Hoeven F., Zákány J., Duboule D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell. 1996 Jun 28;85(7):1025–1035. doi: 10.1016/s0092-8674(00)81303-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES