Abstract
To test the hypothesis that immunoglobulin gene hypermutation in vivo employs a pathway in which DNA breaks are introduced and subsequently repaired to produce mutations, we have used a PCR-based assay to detect and identify single-strand DNA breaks in lambda1 genes of actively hypermutating primary murine germinal center B cells. We find that there is a two- to threefold excess of breaks in lambda1 genes of hypermutating B cells, relative to nonhypermutating B cells, and that 1.3% of germinal center B cells contain breaks in the lambda1 gene that are associated with hypermutation. Breaks were found in both top and bottom DNA strands and were localized to the region of lambda1 that actively hypermutates, but duplex breaks accounted for only a subset of breaks identified. Almost half of the breaks in hypermutating B cells occurred at hotspots, sites at which two or more independent breaks were identified. Breaksite hotspots were associated with characteristic sequence motifs: a pyrimidine-rich motif, either RCTYT or CCYC; and RGYW, a sequence motif associated with hypermutation hotspots. The sequence motifs identified at breaksite hotspots should inform the design of substrates for characterization of activities that participate in the hypermutation pathway.
Full Text
The Full Text of this article is available as a PDF (290.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Betz A. G., Neuberger M. S., Milstein C. Discriminating intrinsic and antigen-selected mutational hotspots in immunoglobulin V genes. Immunol Today. 1993 Aug;14(8):405–411. doi: 10.1016/0167-5699(93)90144-a. [DOI] [PubMed] [Google Scholar]
- Brenner S., Milstein C. Origin of antibody variation. Nature. 1966 Jul 16;211(5046):242–243. doi: 10.1038/211242a0. [DOI] [PubMed] [Google Scholar]
- Bross L., Fukita Y., McBlane F., Démollière C., Rajewsky K., Jacobs H. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity. 2000 Nov;13(5):589–597. doi: 10.1016/s1074-7613(00)00059-5. [DOI] [PubMed] [Google Scholar]
- Cascalho M., Wong J., Steinberg C., Wabl M. Mismatch repair co-opted by hypermutation. Science. 1998 Feb 20;279(5354):1207–1210. doi: 10.1126/science.279.5354.1207. [DOI] [PubMed] [Google Scholar]
- Cowell L. G., Kepler T. B. The nucleotide-replacement spectrum under somatic hypermutation exhibits microsequence dependence that is strand-symmetric and distinct from that under germline mutation. J Immunol. 2000 Feb 15;164(4):1971–1976. doi: 10.4049/jimmunol.164.4.1971. [DOI] [PubMed] [Google Scholar]
- Diaz M., Greenberg A. S., Flajnik M. F. Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14343–14348. doi: 10.1073/pnas.95.24.14343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diaz M., Velez J., Singh M., Cerny J., Flajnik M. F. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol. 1999 May;11(5):825–833. doi: 10.1093/intimm/11.5.825. [DOI] [PubMed] [Google Scholar]
- Dunn-Walters D. K., Dogan A., Boursier L., MacDonald C. M., Spencer J. Base-specific sequences that bias somatic hypermutation deduced by analysis of out-of-frame human IgVH genes. J Immunol. 1998 Mar 1;160(5):2360–2364. [PubMed] [Google Scholar]
- Dörner T., Brezinschek H. P., Foster S. J., Brezinschek R. I., Farner N. L., Lipsky P. E. Comparable impact of mutational and selective influences in shaping the expressed repertoire of peripheral IgM+/CD5- and IgM+/CD5+ B cells. Eur J Immunol. 1998 Feb;28(2):657–668. doi: 10.1002/(SICI)1521-4141(199802)28:02<657::AID-IMMU657>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Ehrenstein M. R., Neuberger M. S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 1999 Jun 15;18(12):3484–3490. doi: 10.1093/emboj/18.12.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster S. J., Dorner T., Lipsky P. E. Targeting and subsequent selection of somatic hypermutations in the human V kappa repertoire. Eur J Immunol. 1999 Oct;29(10):3122–3132. doi: 10.1002/(SICI)1521-4141(199910)29:10<3122::AID-IMMU3122>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Frey S., Bertocci B., Delbos F., Quint L., Weill J. C., Reynaud C. A. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity. 1998 Jul;9(1):127–134. doi: 10.1016/s1074-7613(00)80594-4. [DOI] [PubMed] [Google Scholar]
- González-Fernández A., Gupta S. K., Pannell R., Neuberger M. S., Milstein C. Somatic mutation of immunoglobulin lambda chains: a segment of the major intron hypermutates as much as the complementarity-determining regions. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12614–12618. doi: 10.1073/pnas.91.26.12614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goossens T., Klein U., Küppers R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2463–2468. doi: 10.1073/pnas.95.5.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris R. S., Kong Q., Maizels N. Somatic hypermutation and the three R's: repair, replication and recombination. Mutat Res. 1999 Mar;436(2):157–178. doi: 10.1016/s1383-5742(99)00003-4. [DOI] [PubMed] [Google Scholar]
- Hengstschläger M., Williams M., Maizels N. A lambda 1 transgene under the control of a heavy chain promoter and enhancer does not undergo somatic hypermutation. Eur J Immunol. 1994 Jul;24(7):1649–1656. doi: 10.1002/eji.1830240729. [DOI] [PubMed] [Google Scholar]
- Jolly C. J., Wagner S. D., Rada C., Klix N., Milstein C., Neuberger M. S. The targeting of somatic hypermutation. Semin Immunol. 1996 Jun;8(3):159–168. doi: 10.1006/smim.1996.0020. [DOI] [PubMed] [Google Scholar]
- Kelsoe G. The germinal center: a crucible for lymphocyte selection. Semin Immunol. 1996 Jun;8(3):179–184. doi: 10.1006/smim.1996.0022. [DOI] [PubMed] [Google Scholar]
- Kim N., Storb U. The role of DNA repair in somatic hypermutation of immunoglobulin genes. J Exp Med. 1998 Jun 1;187(11):1729–1733. doi: 10.1084/jem.187.11.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein U., Goossens T., Fischer M., Kanzler H., Braeuninger A., Rajewsky K., Küppers R. Somatic hypermutation in normal and transformed human B cells. Immunol Rev. 1998 Apr;162:261–280. doi: 10.1111/j.1600-065x.1998.tb01447.x. [DOI] [PubMed] [Google Scholar]
- Kong Q., Maizels N. PMS2-deficiency diminishes hypermutation of a lambda1 transgene in young but not older mice. Mol Immunol. 1999 Feb;36(2):83–91. doi: 10.1016/s0161-5890(99)00027-9. [DOI] [PubMed] [Google Scholar]
- Kong Q., Zhao L., Subbaiah S., Maizels N. A lambda 3' enhancer drives active and untemplated somatic hypermutation of a lambda 1 transgene. J Immunol. 1998 Jul 1;161(1):294–301. [PubMed] [Google Scholar]
- Küppers R., Goossens T., Klein U. The role of somatic hypermutation in the generation of deletions and duplications in human Ig V region genes and chromosomal translocations. Curr Top Microbiol Immunol. 1999;246:193–198. doi: 10.1007/978-3-642-60162-0_24. [DOI] [PubMed] [Google Scholar]
- Mage R. G. Diversification of rabbit VH genes by gene-conversion-like and hypermutation mechanisms. Immunol Rev. 1998 Apr;162:49–54. doi: 10.1111/j.1600-065x.1998.tb01428.x. [DOI] [PubMed] [Google Scholar]
- Milstein C., Neuberger M. S., Staden R. Both DNA strands of antibody genes are hypermutation targets. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8791–8794. doi: 10.1073/pnas.95.15.8791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papavasiliou F. N., Schatz D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature. 2000 Nov 9;408(6809):216–221. doi: 10.1038/35041599. [DOI] [PubMed] [Google Scholar]
- Parng C. L., Hansal S., Goldsby R. A., Osborne B. A. Diversification of bovine lambda-light chain genes. Ann N Y Acad Sci. 1995 Sep 29;764:155–157. doi: 10.1111/j.1749-6632.1995.tb55819.x. [DOI] [PubMed] [Google Scholar]
- Parng C. L., Hansal S., Goldsby R. A., Osborne B. A. Gene conversion contributes to Ig light chain diversity in cattle. J Immunol. 1996 Dec 15;157(12):5478–5486. [PubMed] [Google Scholar]
- Peakman M. C., Maizels N. Localization of splenic B cells activated for switch recombination by in situ hybridization with Igamma1 switch transcript and Rad51 probes. J Immunol. 1998 Oct 15;161(8):4008–4015. [PubMed] [Google Scholar]
- Phung Q. H., Winter D. B., Alrefai R., Gearhart P. J. Hypermutation in Ig V genes from mice deficient in the MLH1 mismatch repair protein. J Immunol. 1999 Mar 15;162(6):3121–3124. [PubMed] [Google Scholar]
- Phung Q. H., Winter D. B., Cranston A., Tarone R. E., Bohr V. A., Fishel R., Gearhart P. J. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J Exp Med. 1998 Jun 1;187(11):1745–1751. doi: 10.1084/jem.187.11.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Przylepa J., Himes C., Kelsoe G. Lymphocyte development and selection in germinal centers. Curr Top Microbiol Immunol. 1998;229:85–104. doi: 10.1007/978-3-642-71984-4_8. [DOI] [PubMed] [Google Scholar]
- Rada C., Ehrenstein M. R., Neuberger M. S., Milstein C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity. 1998 Jul;9(1):135–141. doi: 10.1016/s1074-7613(00)80595-6. [DOI] [PubMed] [Google Scholar]
- Reynaud C. A., Anquez V., Grimal H., Weill J. C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell. 1987 Feb 13;48(3):379–388. doi: 10.1016/0092-8674(87)90189-9. [DOI] [PubMed] [Google Scholar]
- Rogozin I. B., Kolchanov N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta. 1992 Nov 15;1171(1):11–18. doi: 10.1016/0167-4781(92)90134-l. [DOI] [PubMed] [Google Scholar]
- Rogozin I. B., Sredneva N. E., Kolchanov N. A. Somatic hypermutagenesis in immunoglobulin genes. III. Somatic mutations in the chicken light chain locus. Biochim Biophys Acta. 1996 May 2;1306(2-3):171–178. doi: 10.1016/0167-4781(95)00241-3. [DOI] [PubMed] [Google Scholar]
- Sale J. E., Neuberger M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity. 1998 Dec;9(6):859–869. doi: 10.1016/s1074-7613(00)80651-2. [DOI] [PubMed] [Google Scholar]
- Storb U., Peters A., Klotz E., Kim N., Shen H. M., Hackett J., Rogerson B., Martin T. E. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev. 1998 Apr;162:153–160. doi: 10.1111/j.1600-065x.1998.tb01438.x. [DOI] [PubMed] [Google Scholar]
- Thompson C. B., Neiman P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell. 1987 Feb 13;48(3):369–378. doi: 10.1016/0092-8674(87)90188-7. [DOI] [PubMed] [Google Scholar]
- Varade W. S., Carnahan J. A., Kingsley P. D., Insel R. A. Inherent properties of somatic hypermutation as revealed by human non-productive VH6 immunoglobulin rearrangements. Immunology. 1998 Feb;93(2):171–176. doi: 10.1046/j.1365-2567.1998.00427.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vora K. A., Tumas-Brundage K. M., Lentz V. M., Cranston A., Fishel R., Manser T. Severe attenuation of the B cell immune response in Msh2-deficient mice. J Exp Med. 1999 Feb 1;189(3):471–482. doi: 10.1084/jem.189.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner S. D., Milstein C., Neuberger M. S. Codon bias targets mutation. Nature. 1995 Aug 31;376(6543):732–732. doi: 10.1038/376732a0. [DOI] [PubMed] [Google Scholar]
- Weinstein P. D., Anderson A. O., Mage R. G. Rabbit IgH sequences in appendix germinal centers: VH diversification by gene conversion-like and hypermutation mechanisms. Immunity. 1994 Nov;1(8):647–659. doi: 10.1016/1074-7613(94)90036-1. [DOI] [PubMed] [Google Scholar]
- Wiesendanger M., Kneitz B., Edelmann W., Scharff M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J Exp Med. 2000 Feb 7;191(3):579–584. doi: 10.1084/jem.191.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson P. C., de Bouteiller O., Liu Y. J., Potter K., Banchereau J., Capra J. D., Pascual V. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med. 1998 Jan 5;187(1):59–70. doi: 10.1084/jem.187.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winter D. B., Gearhart P. J. Dual enigma of somatic hypermutation of immunoglobulin variable genes: targeting and mechanism. Immunol Rev. 1998 Apr;162:89–96. doi: 10.1111/j.1600-065x.1998.tb01432.x. [DOI] [PubMed] [Google Scholar]
- Winter D. B., Phung Q. H., Umar A., Baker S. M., Tarone R. E., Tanaka K., Liskay R. M., Kunkel T. A., Bohr V. A., Gearhart P. J. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6953–6958. doi: 10.1073/pnas.95.12.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yélamos J., Klix N., Goyenechea B., Lozano F., Chui Y. L., González Fernández A., Pannell R., Neuberger M. S., Milstein C. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature. 1995 Jul 20;376(6537):225–229. doi: 10.1038/376225a0. [DOI] [PubMed] [Google Scholar]