Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):197–207. doi: 10.1093/genetics/158.1.197

Genes regulating touch cell development in Caenorhabditis elegans.

H Du 1, M Chalfie 1
PMCID: PMC1461620  PMID: 11333230

Abstract

To identify genes regulating the development of the six touch receptor neurons, we screened the F(2) progeny of mutated animals expressing an integrated mec-2::gfp transgene that is expressed mainly in these touch cells. From 2638 mutated haploid genomes, we obtained 11 mutations representing 11 genes that affected the production, migration, or outgrowth of the touch cells. Eight of these mutations were in known genes, and 2 defined new genes (mig-21 and vab-15). The mig-21 mutation is the first known to affect the asymmetry of the migrations of Q neuroblasts, the cells that give rise to two of the six touch cells. vab-15 is a msh-like homeobox gene that appears to be needed for the proper production of touch cell precursors, since vab-15 animals lacked the four more posterior touch cells. The remaining touch cells (the ALM cells) were present but mispositioned. A similar touch cell phenotype is produced by mutations in lin-32. A more severe phenotype; i.e., animals often lacked ALM cells, was seen in lin-32 vab-15 double mutants, suggesting that these genes acted redundantly in ALM differentiation. In addition to the touch cell abnormalities, vab-15 animals variably exhibit embryonic or larval lethality, cell degenerations, malformation of the posterior body, uncoordinated movement, and defective egg laying.

Full Text

The Full Text of this article is available as a PDF (324.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambros V., Horvitz H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 1984 Oct 26;226(4673):409–416. doi: 10.1126/science.6494891. [DOI] [PubMed] [Google Scholar]
  2. Basson M., Horvitz H. R. The Caenorhabditis elegans gene sem-4 controls neuronal and mesodermal cell development and encodes a zinc finger protein. Genes Dev. 1996 Aug 1;10(15):1953–1965. doi: 10.1101/gad.10.15.1953. [DOI] [PubMed] [Google Scholar]
  3. Branda C. S., Stern M. J. Cell migration and axon growth cone guidance in Caenorhabditis elegans. Curr Opin Genet Dev. 1999 Aug;9(4):479–484. doi: 10.1016/S0959-437X(99)80073-2. [DOI] [PubMed] [Google Scholar]
  4. Branda C. S., Stern M. J. Mechanisms controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. Dev Biol. 2000 Oct 1;226(1):137–151. doi: 10.1006/dbio.2000.9853. [DOI] [PubMed] [Google Scholar]
  5. Bray D., Thomas C., Shaw G. Growth cone formation in cultures of sensory neurons. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5226–5229. doi: 10.1073/pnas.75.10.5226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  8. Chalfie M., Au M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science. 1989 Feb 24;243(4894 Pt 1):1027–1033. doi: 10.1126/science.2646709. [DOI] [PubMed] [Google Scholar]
  9. Chalfie M., Horvitz H. R., Sulston J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell. 1981 Apr;24(1):59–69. doi: 10.1016/0092-8674(81)90501-8. [DOI] [PubMed] [Google Scholar]
  10. Chalfie M., Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol. 1981 Mar;82(2):358–370. doi: 10.1016/0012-1606(81)90459-0. [DOI] [PubMed] [Google Scholar]
  11. Chalfie M., Thomson J. N., Sulston J. E. Induction of neuronal branching in Caenorhabditis elegans. Science. 1983 Jul 1;221(4605):61–63. doi: 10.1126/science.6857263. [DOI] [PubMed] [Google Scholar]
  12. Chan S. S., Zheng H., Su M. W., Wilk R., Killeen M. T., Hedgecock E. M., Culotti J. G. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996 Oct 18;87(2):187–195. doi: 10.1016/s0092-8674(00)81337-9. [DOI] [PubMed] [Google Scholar]
  13. Chisholm A. Control of cell fate in the tail region of C. elegans by the gene egl-5. Development. 1991 Apr;111(4):921–932. doi: 10.1242/dev.111.4.921. [DOI] [PubMed] [Google Scholar]
  14. Clark S. G., Chisholm A. D., Horvitz H. R. Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell. 1993 Jul 16;74(1):43–55. doi: 10.1016/0092-8674(93)90293-y. [DOI] [PubMed] [Google Scholar]
  15. Costa M., Weir M., Coulson A., Sulston J., Kenyon C. Posterior pattern formation in C. elegans involves position-specific expression of a gene containing a homeobox. Cell. 1988 Dec 2;55(5):747–756. doi: 10.1016/0092-8674(88)90131-6. [DOI] [PubMed] [Google Scholar]
  16. Davidson D. The function and evolution of Msx genes: pointers and paradoxes. Trends Genet. 1995 Oct;11(10):405–411. doi: 10.1016/s0168-9525(00)89124-6. [DOI] [PubMed] [Google Scholar]
  17. Du H., Gu G., William C. M., Chalfie M. Extracellular proteins needed for C. elegans mechanosensation. Neuron. 1996 Jan;16(1):183–194. doi: 10.1016/s0896-6273(00)80035-5. [DOI] [PubMed] [Google Scholar]
  18. Duggan A., Ma C., Chalfie M. Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. Development. 1998 Oct;125(20):4107–4119. doi: 10.1242/dev.125.20.4107. [DOI] [PubMed] [Google Scholar]
  19. Ekker M., Akimenko M. A., Bremiller R., Westerfield M. Regional expression of three homeobox transcripts in the inner ear of zebrafish embryos. Neuron. 1992 Jul;9(1):27–35. doi: 10.1016/0896-6273(92)90217-2. [DOI] [PubMed] [Google Scholar]
  20. Ellis H. M., Horvitz H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986 Mar 28;44(6):817–829. doi: 10.1016/0092-8674(86)90004-8. [DOI] [PubMed] [Google Scholar]
  21. Finney M., Ruvkun G., Horvitz H. R. The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors. Cell. 1988 Dec 2;55(5):757–769. doi: 10.1016/0092-8674(88)90132-8. [DOI] [PubMed] [Google Scholar]
  22. Finney M., Ruvkun G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell. 1990 Nov 30;63(5):895–905. doi: 10.1016/0092-8674(90)90493-x. [DOI] [PubMed] [Google Scholar]
  23. Forrester W. C., Perens E., Zallen J. A., Garriga G. Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration. Genetics. 1998 Jan;148(1):151–165. doi: 10.1093/genetics/148.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hamelin M., Scott I. M., Way J. C., Culotti J. G. The mec-7 beta-tubulin gene of Caenorhabditis elegans is expressed primarily in the touch receptor neurons. EMBO J. 1992 Aug;11(8):2885–2893. doi: 10.1002/j.1460-2075.1992.tb05357.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Harris J., Honigberg L., Robinson N., Kenyon C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development. 1996 Oct;122(10):3117–3131. doi: 10.1242/dev.122.10.3117. [DOI] [PubMed] [Google Scholar]
  26. Hedgecock E. M., Culotti J. G., Hall D. H., Stern B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987 Jul;100(3):365–382. doi: 10.1242/dev.100.3.365. [DOI] [PubMed] [Google Scholar]
  27. Hedgecock E. M., Culotti J. G., Hall D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990 Jan;4(1):61–85. doi: 10.1016/0896-6273(90)90444-k. [DOI] [PubMed] [Google Scholar]
  28. Hedgecock E. M., Culotti J. G., Thomson J. N., Perkins L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev Biol. 1985 Sep;111(1):158–170. doi: 10.1016/0012-1606(85)90443-9. [DOI] [PubMed] [Google Scholar]
  29. Herman M. A., Ch'ng Q., Hettenbach S. M., Ratliff T. M., Kenyon C., Herman R. K. EGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans. Development. 1999 Feb;126(5):1055–1064. doi: 10.1242/dev.126.5.1055. [DOI] [PubMed] [Google Scholar]
  30. Hill R. E., Jones P. F., Rees A. R., Sime C. M., Justice M. J., Copeland N. G., Jenkins N. A., Graham E., Davidson D. R. A new family of mouse homeo box-containing genes: molecular structure, chromosomal location, and developmental expression of Hox-7.1. Genes Dev. 1989 Jan;3(1):26–37. doi: 10.1101/gad.3.1.26. [DOI] [PubMed] [Google Scholar]
  31. Hodgkin J. A., Brenner S. Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics. 1977 Jun;86(2 Pt 1):275–287. [PMC free article] [PubMed] [Google Scholar]
  32. Ivens A., Flavin N., Williamson R., Dixon M., Bates G., Buckingham M., Robert B. The human homeobox gene HOX7 maps to chromosome 4p16.1 and may be implicated in Wolf-Hirschhorn syndrome. Hum Genet. 1990 Apr;84(5):473–476. doi: 10.1007/BF00195823. [DOI] [PubMed] [Google Scholar]
  33. Jia Y., Xie G., Aamodt E. pag-3, a Caenorhabditis elegans gene involved in touch neuron gene expression and coordinated movement. Genetics. 1996 Jan;142(1):141–147. doi: 10.1093/genetics/142.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kenyon C. A gene involved in the development of the posterior body region of C. elegans. Cell. 1986 Aug 1;46(3):477–487. doi: 10.1016/0092-8674(86)90668-9. [DOI] [PubMed] [Google Scholar]
  35. Labouesse M., Sookhareea S., Horvitz H. R. The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development. 1994 Sep;120(9):2359–2368. doi: 10.1242/dev.120.9.2359. [DOI] [PubMed] [Google Scholar]
  36. Maloof J. N., Whangbo J., Harris J. M., Jongeward G. D., Kenyon C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development. 1999 Jan;126(1):37–49. doi: 10.1242/dev.126.1.37. [DOI] [PubMed] [Google Scholar]
  37. Manser J., Roonprapunt C., Margolis B. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev Biol. 1997 Apr 1;184(1):150–164. doi: 10.1006/dbio.1997.8516. [DOI] [PubMed] [Google Scholar]
  38. Manser J., Wood W. B. Mutations affecting embryonic cell migrations in Caenorhabditis elegans. Dev Genet. 1990;11(1):49–64. doi: 10.1002/dvg.1020110107. [DOI] [PubMed] [Google Scholar]
  39. McIntire S. L., Garriga G., White J., Jacobson D., Horvitz H. R. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992 Feb;8(2):307–322. doi: 10.1016/0896-6273(92)90297-q. [DOI] [PubMed] [Google Scholar]
  40. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mitani S., Du H., Hall D. H., Driscoll M., Chalfie M. Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development. 1993 Nov;119(3):773–783. doi: 10.1242/dev.119.3.773. [DOI] [PubMed] [Google Scholar]
  42. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  43. Monaghan A. P., Davidson D. R., Sime C., Graham E., Baldock R., Bhattacharya S. S., Hill R. E. The Msh-like homeobox genes define domains in the developing vertebrate eye. Development. 1991 Aug;112(4):1053–1061. doi: 10.1242/dev.112.4.1053. [DOI] [PubMed] [Google Scholar]
  44. Ogura K., Wicky C., Magnenat L., Tobler H., Mori I., Müller F., Ohshima Y. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev. 1994 Oct 15;8(20):2389–2400. doi: 10.1101/gad.8.20.2389. [DOI] [PubMed] [Google Scholar]
  45. Portman D. S., Emmons S. W. The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development. 2000 Dec;127(24):5415–5426. doi: 10.1242/dev.127.24.5415. [DOI] [PubMed] [Google Scholar]
  46. Run J. Q., Steven R., Hung M. S., van Weeghel R., Culotti J. G., Way J. C. Suppressors of the unc-73 gene of Caenorhabditis elegans. Genetics. 1996 May;143(1):225–236. doi: 10.1093/genetics/143.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ruvkun G., Giusto J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature. 1989 Mar 23;338(6213):313–319. doi: 10.1038/338313a0. [DOI] [PubMed] [Google Scholar]
  48. Savage C., Hamelin M., Culotti J. G., Coulson A., Albertson D. G., Chalfie M. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 1989 Jun;3(6):870–881. doi: 10.1101/gad.3.6.870. [DOI] [PubMed] [Google Scholar]
  49. Savage C., Xue Y., Mitani S., Hall D., Zakhary R., Chalfie M. Mutations in the Caenorhabditis elegans beta-tubulin gene mec-7: effects on microtubule assembly and stability and on tubulin autoregulation. J Cell Sci. 1994 Aug;107(Pt 8):2165–2175. doi: 10.1242/jcs.107.8.2165. [DOI] [PubMed] [Google Scholar]
  50. Siddiqui S. S., Culotti J. G. Examination of neurons in wild type and mutants of Caenorhabditis elegans using antibodies to horseradish peroxidase. J Neurogenet. 1991;7(4):193–211. doi: 10.3109/01677069109167433. [DOI] [PubMed] [Google Scholar]
  51. Smouse D., Goodman C., Mahowald A., Perrimon N. polyhomeotic: a gene required for the embryonic development of axon pathways in the central nervous system of Drosophila. Genes Dev. 1988 Jul;2(7):830–842. doi: 10.1101/gad.2.7.830. [DOI] [PubMed] [Google Scholar]
  52. Su M. W., Suzuki H. R., Solursh M., Ramirez F. Progressively restricted expression of a new homeobox-containing gene during Xenopus laevis embryogenesis. Development. 1991 Apr;111(4):1179–1187. doi: 10.1242/dev.111.4.1179. [DOI] [PubMed] [Google Scholar]
  53. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  54. Suzuki H. R., Padanilam B. J., Vitale E., Ramirez F., Solursh M. Repeating developmental expression of G-Hox 7, a novel homeobox-containing gene in the chicken. Dev Biol. 1991 Nov;148(1):375–388. doi: 10.1016/0012-1606(91)90345-4. [DOI] [PubMed] [Google Scholar]
  55. Suzuki M., Tanaka M., Iwase T., Naito Y., Sugimura H., Kino I. Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors. Biochem Biophys Res Commun. 1993 Jul 15;194(1):187–193. doi: 10.1006/bbrc.1993.1802. [DOI] [PubMed] [Google Scholar]
  56. Sym M., Robinson N., Kenyon C. MIG-13 positions migrating cells along the anteroposterior body axis of C. elegans. Cell. 1999 Jul 9;98(1):25–36. doi: 10.1016/S0092-8674(00)80603-0. [DOI] [PubMed] [Google Scholar]
  57. Wang B. B., Müller-Immergluck M. M., Austin J., Robinson N. T., Chisholm A., Kenyon C. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell. 1993 Jul 16;74(1):29–42. doi: 10.1016/0092-8674(93)90292-x. [DOI] [PubMed] [Google Scholar]
  58. Way J. C., Chalfie M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev. 1989 Dec;3(12A):1823–1833. doi: 10.1101/gad.3.12a.1823. [DOI] [PubMed] [Google Scholar]
  59. Wightman B., Clark S. G., Taskar A. M., Forrester W. C., Maricq A. V., Bargmann C. I., Garriga G. The C. elegans gene vab-8 guides posteriorly directed axon outgrowth and cell migration. Development. 1996 Feb;122(2):671–682. doi: 10.1242/dev.122.2.671. [DOI] [PubMed] [Google Scholar]
  60. Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993 Dec 3;75(5):855–862. doi: 10.1016/0092-8674(93)90530-4. [DOI] [PubMed] [Google Scholar]
  61. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wolf F. W., Hung M. S., Wightman B., Way J., Garriga G. vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron. 1998 Apr;20(4):655–666. doi: 10.1016/s0896-6273(00)81006-5. [DOI] [PubMed] [Google Scholar]
  63. Wu J., Duggan A., Chalfie M. Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes Dev. 2001 Mar 15;15(6):789–802. doi: 10.1101/gad.857401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Xue D., Tu Y., Chalfie M. Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science. 1993 Sep 3;261(5126):1324–1328. doi: 10.1126/science.8103239. [DOI] [PubMed] [Google Scholar]
  65. Zhao C., Emmons S. W. A transcription factor controlling development of peripheral sense organs in C. elegans. Nature. 1995 Jan 5;373(6509):74–78. doi: 10.1038/373074a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES