Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):439–450. doi: 10.1093/genetics/158.1.439

The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in arabidopsis RPS2-mediated disease resistance.

D Banerjee 1, X Zhang 1, A F Bent 1
PMCID: PMC1461633  PMID: 11333251

Abstract

Like many other plant disease resistance genes, Arabidopsis thaliana RPS2 encodes a product with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. This study explored the hypothesized interaction of RPS2 with other host factors that may be required for perception of Pseudomonas syringae pathogens that express avrRpt2 and/or for the subsequent induction of plant defense responses. Crosses between Arabidopsis ecotypes Col-0 (resistant) and Po-1 (susceptible) revealed segregation of more than one gene that controls resistance to P. syringae that express avrRpt2. Many F(2) and F(3) progeny exhibited intermediate resistance phenotypes. In addition to RPS2, at least one additional genetic interval associated with this defense response was identified and mapped using quantitative genetic methods. Further genetic and molecular genetic complementation experiments with cloned RPS2 alleles revealed that the Po-1 allele of RPS2 can function in a Col-0 genetic background, but not in a Po-1 background. The other resistance-determining genes of Po-1 can function, however, as they successfully conferred resistance in combination with the Col-0 allele of RPS2. Domain-swap experiments revealed that in RPS2, a polymorphism at six amino acids in the LRR region is responsible for this allele-specific ability to function with other host factors.

Full Text

The Full Text of this article is available as a PDF (286.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  2. Bendahmane A., Kanyuka K., Baulcombe D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell. 1999 May;11(5):781–792. doi: 10.1105/tpc.11.5.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bent A. F., Kunkel B. N., Dahlbeck D., Brown K. L., Schmidt R., Giraudat J., Leung J., Staskawicz B. J. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science. 1994 Sep 23;265(5180):1856–1860. doi: 10.1126/science.8091210. [DOI] [PubMed] [Google Scholar]
  4. Bittner-Eddy P. D., Crute I. R., Holub E. B., Beynon J. L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000 Jan;21(2):177–188. doi: 10.1046/j.1365-313x.2000.00664.x. [DOI] [PubMed] [Google Scholar]
  5. Braun T., Schofield P. R., Sprengel R. Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. EMBO J. 1991 Jul;10(7):1885–1890. doi: 10.1002/j.1460-2075.1991.tb07714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buell C. R., Somerville S. C. Use of Arabidopsis recombinant inbred lines reveals a monogenic and a novel digenic resistance mechanism to Xanthomonas campestris pv campestris. Plant J. 1997 Jul;12(1):21–29. doi: 10.1046/j.1365-313x.1997.12010021.x. [DOI] [PubMed] [Google Scholar]
  7. Chen Z., Kloek A. P., Boch J., Katagiri F., Kunkel B. N. The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol Plant Microbe Interact. 2000 Dec;13(12):1312–1321. doi: 10.1094/MPMI.2000.13.12.1312. [DOI] [PubMed] [Google Scholar]
  8. Clough S. J., Bent A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998 Dec;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  9. Crute I. R., Pink DAC. Genetics and Utilization of Pathogen Resistance in Plants. Plant Cell. 1996 Oct;8(10):1747–1755. doi: 10.1105/tpc.8.10.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellis J. G., Lawrence G. J., Luck J. E., Dodds P. N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell. 1999 Mar;11(3):495–506. doi: 10.1105/tpc.11.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellis J., Dodds P., Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol. 2000 Aug;3(4):278–284. doi: 10.1016/s1369-5266(00)00080-7. [DOI] [PubMed] [Google Scholar]
  12. Fletcher J. C., Brand U., Running M. P., Simon R., Meyerowitz E. M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 1999 Mar 19;283(5409):1911–1914. doi: 10.1126/science.283.5409.1911. [DOI] [PubMed] [Google Scholar]
  13. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol. 1999 Aug;2(4):280–286. doi: 10.1016/S1369-5266(99)80050-8. [DOI] [PubMed] [Google Scholar]
  14. Grant M., Mansfield J. Early events in host-pathogen interactions. Curr Opin Plant Biol. 1999 Aug;2(4):312–319. doi: 10.1016/S1369-5266(99)80055-7. [DOI] [PubMed] [Google Scholar]
  15. Greenberg Jean T. PROGRAMMED CELL DEATH IN PLANT-PATHOGEN INTERACTIONS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):525–545. doi: 10.1146/annurev.arplant.48.1.525. [DOI] [PubMed] [Google Scholar]
  16. Hinsch M., Staskawicz B. Identification of a new Arabidopsis disease resistance locus, RPs4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant Microbe Interact. 1996 Jan;9(1):55–61. doi: 10.1094/mpmi-9-0055. [DOI] [PubMed] [Google Scholar]
  17. Innes R. W. Genetic dissection of R gene signal transduction pathways. Curr Opin Plant Biol. 1998 Aug;1(4):299–304. doi: 10.1016/1369-5266(88)80050-5. [DOI] [PubMed] [Google Scholar]
  18. Jia Y., McAdams S. A., Bryan G. T., Hershey H. P., Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 2000 Aug 1;19(15):4004–4014. doi: 10.1093/emboj/19.15.4004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kobe B., Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. doi: 10.1016/0968-0004(94)90090-6. [DOI] [PubMed] [Google Scholar]
  20. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  21. Kooman-Gersmann M., Honee G., Bonnema G., De Wit PJGM. A High-Affinity Binding Site for the AVR9 Peptide Elicitor of Cladosporium fulvum Is Present on Plasma Membranes of Tomato and Other Solanaceous Plants. Plant Cell. 1996 May;8(5):929–938. doi: 10.1105/tpc.8.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kunkel B. N., Bent A. F., Dahlbeck D., Innes R. W., Staskawicz B. J. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell. 1993 Aug;5(8):865–875. doi: 10.1105/tpc.5.8.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leister R. T., Katagiri F. A resistance gene product of the nucleotide binding site -- leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J. 2000 May;22(4):345–354. doi: 10.1046/j.1365-313x.2000.00744.x. [DOI] [PubMed] [Google Scholar]
  24. Luck J. E., Lawrence G. J., Dodds P. N., Shepherd K. W., Ellis J. G. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell. 2000 Aug;12(8):1367–1377. doi: 10.1105/tpc.12.8.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marino M., Braun L., Cossart P., Ghosh P. A framework for interpreting the leucine-rich repeats of the Listeria internalins. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8784–8788. doi: 10.1073/pnas.97.16.8784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  27. McDowell J. M., Dhandaydham M., Long T. A., Aarts M. G., Goff S., Holub E. B., Dangl J. L. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell. 1998 Nov;10(11):1861–1874. doi: 10.1105/tpc.10.11.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meyers B. C., Shen K. A., Rohani P., Gaut B. S., Michelmore R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell. 1998 Nov;10(11):1833–1846. doi: 10.1105/tpc.10.11.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nam H. G., Giraudat J., Den Boer B., Moonan F., Loos WDB., Hauge B. M., Goodman H. M. Restriction Fragment Length Polymorphism Linkage Map of Arabidopsis thaliana. Plant Cell. 1989 Jul;1(7):699–705. doi: 10.1105/tpc.1.7.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parniske M., Hammond-Kosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B., Jones J. D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. doi: 10.1016/s0092-8674(00)80470-5. [DOI] [PubMed] [Google Scholar]
  31. Reuber T. L., Ausubel F. M. Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. Plant Cell. 1996 Feb;8(2):241–249. doi: 10.1105/tpc.8.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rhee S. Y., Weng S., Flanders D., Cherry J. M., Dean C., Lister C., Anderson M., Koornneef M., Meinke D. W., Nickle T. Genome maps 9. Arabidopsis thaliana. Wall chart. Science. 1998 Oct 23;282(5389):663–667. doi: 10.1126/science.282.5389.663. [DOI] [PubMed] [Google Scholar]
  33. Ritter C., Dangl J. L. Interference between Two Specific Pathogen Recognition Events Mediated by Distinct Plant Disease Resistance Genes. Plant Cell. 1996 Feb;8(2):251–257. doi: 10.1105/tpc.8.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salmeron J. M., Barker S. J., Carland F. M., Mehta A. Y., Staskawicz B. J. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell. 1994 Apr;6(4):511–520. doi: 10.1105/tpc.6.4.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Salmeron J. M., Oldroyd G. E., Rommens C. M., Scofield S. R., Kim H. S., Lavelle D. T., Dahlbeck D., Staskawicz B. J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell. 1996 Jul 12;86(1):123–133. doi: 10.1016/s0092-8674(00)80083-5. [DOI] [PubMed] [Google Scholar]
  36. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science. 1996 Dec 20;274(5295):2063–2065. doi: 10.1126/science.274.5295.2063. [DOI] [PubMed] [Google Scholar]
  37. Shirasu K., Lahaye T., Tan M. W., Zhou F., Azevedo C., Schulze-Lefert P. A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell. 1999 Nov 12;99(4):355–366. doi: 10.1016/s0092-8674(00)81522-6. [DOI] [PubMed] [Google Scholar]
  38. Silva H., Yoshioka K., Dooner H. K., Klessig D. F. Characterization of a new Arabidopsis mutant exhibiting enhanced disease resistance. Mol Plant Microbe Interact. 1999 Dec;12(12):1053–1063. doi: 10.1094/MPMI.1999.12.12.1053. [DOI] [PubMed] [Google Scholar]
  39. Suzuki N., Choe H. R., Nishida Y., Yamawaki-Kataoka Y., Ohnishi S., Tamaoki T., Kataoka T. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8711–8715. doi: 10.1073/pnas.87.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science. 1996 Dec 20;274(5295):2060–2063. doi: 10.1126/science.274.5295.2060. [DOI] [PubMed] [Google Scholar]
  41. Thomas C. M., Jones D. A., Parniske M., Harrison K., Balint-Kurti P. J., Hatzixanthis K., Jones J. D. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell. 1997 Dec;9(12):2209–2224. doi: 10.1105/tpc.9.12.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Warren R. F., Henk A., Mowery P., Holub E., Innes R. W. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell. 1998 Sep;10(9):1439–1452. doi: 10.1105/tpc.10.9.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Whalen M. C., Innes R. W., Bent A. F., Staskawicz B. J. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell. 1991 Jan;3(1):49–59. doi: 10.1105/tpc.3.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. White F. F., Yang B., Johnson L. B. Prospects for understanding avirulence gene function. Curr Opin Plant Biol. 2000 Aug;3(4):291–298. doi: 10.1016/s1369-5266(00)00082-0. [DOI] [PubMed] [Google Scholar]
  45. Young N. D. The genetic architecture of resistance. Curr Opin Plant Biol. 2000 Aug;3(4):285–290. doi: 10.1016/s1369-5266(00)00081-9. [DOI] [PubMed] [Google Scholar]
  46. Yu G. L., Katagiri F., Ausubel F. M. Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Mol Plant Microbe Interact. 1993 Jul-Aug;6(4):434–443. doi: 10.1094/mpmi-6-434. [DOI] [PubMed] [Google Scholar]
  47. Yu I. C., Parker J., Bent A. F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7819–7824. doi: 10.1073/pnas.95.13.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhou J., Loh Y. T., Bressan R. A., Martin G. B. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell. 1995 Dec 15;83(6):925–935. doi: 10.1016/0092-8674(95)90208-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES