Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):279–290. doi: 10.1093/genetics/158.1.279

Evidence for selection at the fused1 locus of Drosophila americana.

J Vieira 1, B F McAllister 1, B Charlesworth 1
PMCID: PMC1461643  PMID: 11333236

Abstract

We analyze genetic variation at fused1, a locus that is close to the centromere of the X chromosome-autosome (X/4) fusion in Drosophila americana. In contrast to other X-linked and autosomal genes, for which a lack of population subdivision in D. americana has been observed at the DNA level, we find strong haplotype structure associated with the alternative chromosomal arrangements. There are several derived fixed differences at fused1 (including one amino acid replacement) between two haplotype classes of this locus. From these results, we obtain an estimate of an age of approximately 0.61 million years for the origin of the two haplotypes of the fused1 gene. Haplotypes associated with the X/4 fusion have less DNA sequence variation at fused1 than haplotypes associated with the ancestral chromosome arrangement. The X/4 haplotypes also exhibit clinal variation for the allele frequencies of the three most common amino acid replacement polymorphisms, but not for adjacent silent polymorphisms. These patterns of variation are best explained as a result of selection acting on amino acid substitutions, with geographic variation in selection pressures.

Full Text

The Full Text of this article is available as a PDF (330.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birky C. W., Jr, Walsh J. B. Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414–6418. doi: 10.1073/pnas.85.17.6414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997 Oct;70(2):155–174. doi: 10.1017/s0016672397002954. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
  4. Clark A. G. Neutral behavior of shared polymorphism. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7730–7734. doi: 10.1073/pnas.94.15.7730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hilton H., Hey J. DNA sequence variation at the period locus reveals the history of species and speciation events in the Drosophila virilis group. Genetics. 1996 Nov;144(3):1015–1025. doi: 10.1093/genetics/144.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hudson R. R., Boos D. D., Kaplan N. L. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992 Jan;9(1):138–151. doi: 10.1093/oxfordjournals.molbev.a040703. [DOI] [PubMed] [Google Scholar]
  7. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  8. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hughes R. D. An Analysis of the Chromosomes of the Two Sub-Species Drosophila Virilis Virilis and Drosophila Virilis Americana. Genetics. 1939 Nov;24(6):811–834. doi: 10.1093/genetics/24.6.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ingham P. W. Localized hedgehog activity controls spatial limits of wingless transcription in the Drosophila embryo. Nature. 1993 Dec 9;366(6455):560–562. doi: 10.1038/366560a0. [DOI] [PubMed] [Google Scholar]
  12. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McAllister B. F., Charlesworth B. Reduced sequence variability on the Neo-Y chromosome of Drosophila americana americana. Genetics. 1999 Sep;153(1):221–233. doi: 10.1093/genetics/153.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McAllister B. F., McVean G. A. Neutral evolution of the sex-determining gene transformer in Drosophila. Genetics. 2000 Apr;154(4):1711–1720. doi: 10.1093/genetics/154.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nurminsky D. I., Moriyama E. N., Lozovskaya E. R., Hartl D. L. Molecular phylogeny and genome evolution in the Drosophila virilis species group: duplications of the alcohol dehydrogenase gene. Mol Biol Evol. 1996 Jan;13(1):132–149. doi: 10.1093/oxfordjournals.molbev.a025551. [DOI] [PubMed] [Google Scholar]
  16. Préat T., Thérond P., Lamour-Isnard C., Limbourg-Bouchon B., Tricoire H., Erk I., Mariol M. C., Busson D. A putative serine/threonine protein kinase encoded by the segment-polarity fused gene of Drosophila. Nature. 1990 Sep 6;347(6288):87–89. doi: 10.1038/347087a0. [DOI] [PubMed] [Google Scholar]
  17. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  18. Stalker H. D. CHROMOSOME HOMOLOGIES IN TWO SUB-SPECIES OF DROSOPHILA VIRILIS. Proc Natl Acad Sci U S A. 1940 Sep 15;26(9):575–578. doi: 10.1073/pnas.26.9.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tominaga H., Narise S. Sequence evolution of the Gpdh gene in the Drosophila virilis species group. Genetica. 1995;96(3):293–302. doi: 10.1007/BF01439583. [DOI] [PubMed] [Google Scholar]
  20. Vieira J., Charlesworth B. Evidence for selection at the fused locus of Drosophila virilis. Genetics. 2000 Aug;155(4):1701–1709. doi: 10.1093/genetics/155.4.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vieira J., Charlesworth B. X chromosome DNA variation in Drosophila virilis. Proc Biol Sci. 1999 Sep 22;266(1431):1905–1912. doi: 10.1098/rspb.1999.0865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vieira J., Vieira C. P., Hartl D. L., Lozovskaya E. R. A framework physical map of Drosophila virilis based on P1 clones: applications in genome evolution. Chromosoma. 1997 Jul;106(2):99–107. doi: 10.1007/s004120050229. [DOI] [PubMed] [Google Scholar]
  23. Vieira J., Vieira C. P., Hartl D. L., Lozovskaya E. R. Discordant rates of chromosome evolution in the Drosophila virilis species group. Genetics. 1997 Sep;147(1):223–230. doi: 10.1093/genetics/147.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  25. Yamamoto M., Miklos G. L. Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the functions of satellite DNA. Chromosoma. 1978 Mar 22;66(1):71–98. doi: 10.1007/BF00285817. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES