Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):95–107. doi: 10.1093/genetics/158.1.95

Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation.

A V Strunnikov 1, L Aravind 1, E V Koonin 1
PMCID: PMC1461644  PMID: 11333221

Abstract

In a search for regulatory genes affecting the targeting of the condensin complex to chromatin in Saccharomyces cerevisiae, we identified a member of the adenovirus protease family, SMT4. SMT4 overexpression suppresses the temperature-sensitive conditional lethal phenotype of smc2-6, but not smc2-8 or smc4-1. A disruption allele of SMT4 has a prominent chromosome phenotype: impaired targeting of Smc4p-GFP to rDNA chromatin. Site-specific mutagenesis of the predicted protease active site cysteine and histidine residues of Smt4p abolishes the SMT4 function in vivo. The previously uncharacterized SIZ1 (SAP and Miz) gene, which encodes a protein containing a predicted DNA-binding SAP module and a Miz finger, is identified as a bypass suppressor of the growth defect associated with the SMT4 disruption. The SIZ1 gene disruption is synthetically lethal with the SIZ2 deletion. We propose that SMT4, SIZ1, and SIZ2 are involved in a novel pathway of chromosome maintenance.

Full Text

The Full Text of this article is available as a PDF (804.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aravind L., Koonin E. V. SAP - a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci. 2000 Mar;25(3):112–114. doi: 10.1016/s0968-0004(99)01537-6. [DOI] [PubMed] [Google Scholar]
  3. Chung C. H., Baek S. H. Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun. 1999 Dec 29;266(3):633–640. doi: 10.1006/bbrc.1999.1880. [DOI] [PubMed] [Google Scholar]
  4. Collas P., Le Guellec K., Taskén K. The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis. J Cell Biol. 1999 Dec 13;147(6):1167–1180. doi: 10.1083/jcb.147.6.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fang G., Yu H., Kirschner M. W. Control of mitotic transitions by the anaphase-promoting complex. Philos Trans R Soc Lond B Biol Sci. 1999 Sep 29;354(1389):1583–1590. doi: 10.1098/rstb.1999.0502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freeman L., Aragon-Alcaide L., Strunnikov A. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol. 2000 May 15;149(4):811–824. doi: 10.1083/jcb.149.4.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galibert F., Alexandraki D., Baur A., Boles E., Chalwatzis N., Chuat J. C., Coster F., Cziepluch C., De Haan M., Domdey H. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J. 1996 May 1;15(9):2031–2049. [PMC free article] [PubMed] [Google Scholar]
  8. Guacci V., Koshland D., Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell. 1997 Oct 3;91(1):47–57. doi: 10.1016/s0092-8674(01)80008-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hochstrasser M., Johnson P. R., Arendt C. S., Amerik AYu, Swaminathan S., Swanson R., Li S. J., Laney J., Pals-Rylaarsdam R., Nowak J. The Saccharomyces cerevisiae ubiquitin-proteasome system. Philos Trans R Soc Lond B Biol Sci. 1999 Sep 29;354(1389):1513–1522. doi: 10.1098/rstb.1999.0495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Honda K., Mihara H., Kato Y., Yamaguchi A., Tanaka H., Yasuda H., Furukawa K., Urano T. Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene. 2000 Jun 1;19(24):2812–2819. doi: 10.1038/sj.onc.1203609. [DOI] [PubMed] [Google Scholar]
  11. Johnston M., Hillier L., Riles L., Albermann K., André B., Ansorge W., Benes V., Brückner M., Delius H., Dubois E. The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature. 1997 May 29;387(6632 Suppl):87–90. [PMC free article] [PubMed] [Google Scholar]
  12. Kaplan K. B., Hyman A. A., Sorger P. K. Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation. Cell. 1997 Nov 14;91(4):491–500. doi: 10.1016/s0092-8674(00)80435-3. [DOI] [PubMed] [Google Scholar]
  13. Kimura K., Rybenkov V. V., Crisona N. J., Hirano T., Cozzarelli N. R. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell. 1999 Jul 23;98(2):239–248. doi: 10.1016/s0092-8674(00)81018-1. [DOI] [PubMed] [Google Scholar]
  14. Kretz-Remy C., Tanguay R. M. SUMO/sentrin: protein modifiers regulating important cellular functions. Biochem Cell Biol. 1999;77(4):299–309. [PubMed] [Google Scholar]
  15. Lavoie B. D., Tuffo K. M., Oh S., Koshland D., Holm C. Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren. Mol Biol Cell. 2000 Apr;11(4):1293–1304. doi: 10.1091/mbc.11.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li S. J., Hochstrasser M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol. 2000 Apr;20(7):2367–2377. doi: 10.1128/mcb.20.7.2367-2377.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liang C., Stillman B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 1997 Dec 15;11(24):3375–3386. doi: 10.1101/gad.11.24.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Losada A., Hirano M., Hirano T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 1998 Jul 1;12(13):1986–1997. doi: 10.1101/gad.12.13.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meimoun A., Holtzman T., Weissman Z., McBride H. J., Stillman D. J., Fink G. R., Kornitzer D. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell. 2000 Mar;11(3):915–927. doi: 10.1091/mbc.11.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Meluh P. B., Koshland D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell. 1995 Jul;6(7):793–807. doi: 10.1091/mbc.6.7.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mohr S. E., Boswell R. E. Zimp encodes a homologue of mouse Miz1 and PIAS3 and is an essential gene in Drosophila melanogaster. Gene. 1999 Mar 18;229(1-2):109–116. doi: 10.1016/s0378-1119(99)00033-5. [DOI] [PubMed] [Google Scholar]
  22. Munakata T., Adachi N., Yokoyama N., Kuzuhara T., Horikoshi M. A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells. 2000 Mar;5(3):221–233. doi: 10.1046/j.1365-2443.2000.00319.x. [DOI] [PubMed] [Google Scholar]
  23. Ouspenski I. I., Cabello O. A., Brinkley B. R. Chromosome condensation factor Brn1p is required for chromatid separation in mitosis. Mol Biol Cell. 2000 Apr;11(4):1305–1313. doi: 10.1091/mbc.11.4.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  25. Rawlings N. D., Barrett A. J. MEROPS: the peptidase database. Nucleic Acids Res. 2000 Jan 1;28(1):323–325. doi: 10.1093/nar/28.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saitoh H., Pu R. T., Dasso M. SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem Sci. 1997 Oct;22(10):374–376. doi: 10.1016/s0968-0004(97)01102-x. [DOI] [PubMed] [Google Scholar]
  27. Starr R., Hilton D. J. Negative regulation of the JAK/STAT pathway. Bioessays. 1999 Jan;21(1):47–52. doi: 10.1002/(SICI)1521-1878(199901)21:1<47::AID-BIES6>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  28. Stephens R. S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R. L., Zhao Q. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science. 1998 Oct 23;282(5389):754–759. doi: 10.1126/science.282.5389.754. [DOI] [PubMed] [Google Scholar]
  29. Straight A. F., Belmont A. S., Robinett C. C., Murray A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol. 1996 Dec 1;6(12):1599–1608. doi: 10.1016/s0960-9822(02)70783-5. [DOI] [PubMed] [Google Scholar]
  30. Strunnikov A. V., Hogan E., Koshland D. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 1995 Mar 1;9(5):587–599. doi: 10.1101/gad.9.5.587. [DOI] [PubMed] [Google Scholar]
  31. Strunnikov A. V., Kingsbury J., Koshland D. CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J Cell Biol. 1995 Mar;128(5):749–760. doi: 10.1083/jcb.128.5.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strunnikov A. V., Larionov V. L., Koshland D. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol. 1993 Dec;123(6 Pt 2):1635–1648. doi: 10.1083/jcb.123.6.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sutani T., Yuasa T., Tomonaga T., Dohmae N., Takio K., Yanagida M. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 1999 Sep 1;13(17):2271–2283. doi: 10.1101/gad.13.17.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sutton A., Immanuel D., Arndt K. T. The SIT4 protein phosphatase functions in late G1 for progression into S phase. Mol Cell Biol. 1991 Apr;11(4):2133–2148. doi: 10.1128/mcb.11.4.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tyler J. K., Adams C. R., Chen S. R., Kobayashi R., Kamakaka R. T., Kadonaga J. T. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature. 1999 Dec 2;402(6761):555–560. doi: 10.1038/990147. [DOI] [PubMed] [Google Scholar]
  37. Tóth A., Ciosk R., Uhlmann F., Galova M., Schleiffer A., Nasmyth K. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 1999 Feb 1;13(3):320–333. doi: 10.1101/gad.13.3.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Uesono Y., Fujita A., Toh-e A., Kikuchi Y. The MCS1/SSD1/SRK1/SSL1 gene is involved in stable maintenance of the chromosome in yeast. Gene. 1994 May 27;143(1):135–138. doi: 10.1016/0378-1119(94)90618-1. [DOI] [PubMed] [Google Scholar]
  39. Uhlmann F., Lottspeich F., Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999 Jul 1;400(6739):37–42. doi: 10.1038/21831. [DOI] [PubMed] [Google Scholar]
  40. Weinreich M., Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 1999 Oct 1;18(19):5334–5346. doi: 10.1093/emboj/18.19.5334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Willems A. R., Goh T., Taylor L., Chernushevich I., Shevchenko A., Tyers M. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. Philos Trans R Soc Lond B Biol Sci. 1999 Sep 29;354(1389):1533–1550. doi: 10.1098/rstb.1999.0497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilson R. B., Brenner A. A., White T. B., Engler M. J., Gaughran J. P., Tatchell K. The Saccharomyces cerevisiae SRK1 gene, a suppressor of bcy1 and ins1, may be involved in protein phosphatase function. Mol Cell Biol. 1991 Jun;11(6):3369–3373. doi: 10.1128/mcb.11.6.3369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu L., Wu H., Ma L., Sangiorgi F., Wu N., Bell J. R., Lyons G. E., Maxson R. Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev. 1997 Jul;65(1-2):3–17. doi: 10.1016/s0925-4773(97)00032-4. [DOI] [PubMed] [Google Scholar]
  44. Yamamoto A., Guacci V., Koshland D. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J Cell Biol. 1996 Apr;133(1):99–110. doi: 10.1083/jcb.133.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES