Abstract
The mismatch repair (MMR) system ensures genome integrity by removing mispaired and unpaired bases that originate during replication. A major source of mutational changes is strand slippage in repetitive DNA sequences without concomitant repair. We established a genetic assay that allows measuring the stability of GT repeats in the ade6 gene of Schizosaccharomyces pombe. In repair-proficient strains most of the repeat variations were insertions, with addition of two nucleotides being the most frequent event. GT repeats were highly destabilized in strains defective in msh2 or pms1. In these backgrounds, mainly 2-bp insertions and 2-bp deletions occurred. Surprisingly, essentially the same high mutation rate was found with mutants defective in msh6. In contrast, a defect in swi4 (a homologue of Msh3) caused only slight effects, and instability was not further increased in msh6 swi4 double mutants. Also inactivation of exo1, which encodes an exonuclease that has an MMR-dependent function in repair of base-base mismatches, caused only slightly increased repeat instability. We conclude that Msh2, Msh6, and Pms1 have an important role in preventing tract length variations in dinucleotide repeats. Exo1 and Swi4 have a minor function, which is at least partially independent of MMR.
Full Text
The Full Text of this article is available as a PDF (213.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alani E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol. 1996 Oct;16(10):5604–5615. doi: 10.1128/mcb.16.10.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buermeyer A. B., Deschênes S. M., Baker S. M., Liskay R. M. Mammalian DNA mismatch repair. Annu Rev Genet. 1999;33:533–564. doi: 10.1146/annurev.genet.33.1.533. [DOI] [PubMed] [Google Scholar]
- Debrauwere H., Gendrel C. G., Lechat S., Dutreix M. Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie. 1997 Oct;79(9-10):577–586. doi: 10.1016/s0300-9084(97)82006-8. [DOI] [PubMed] [Google Scholar]
- Drummond J. T., Genschel J., Wolf E., Modrich P. DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSalpha/hMutSbeta ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10144–10149. doi: 10.1073/pnas.94.19.10144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiorentini P., Huang K. N., Tishkoff D. X., Kolodner R. D., Symington L. S. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol. 1997 May;17(5):2764–2773. doi: 10.1128/mcb.17.5.2764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flores-Rozas H., Kolodner R. D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12404–12409. doi: 10.1073/pnas.95.21.12404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genschel J., Littman S. J., Drummond J. T., Modrich P. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem. 1998 Jul 31;273(31):19895–19901. doi: 10.1074/jbc.273.31.19895. [DOI] [PubMed] [Google Scholar]
- Greene C. N., Jinks-Robertson S. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Mol Cell Biol. 1997 May;17(5):2844–2850. doi: 10.1128/mcb.17.5.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimm C., Bähler J., Kohli J. M26 recombinational hotspot and physical conversion tract analysis in the ade6 gene of Schizosaccharomyces pombe. Genetics. 1994 Jan;136(1):41–51. doi: 10.1093/genetics/136.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimm C., Kohli J., Murray J., Maundrell K. Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet. 1988 Dec;215(1):81–86. doi: 10.1007/BF00331307. [DOI] [PubMed] [Google Scholar]
- Habraken Y., Sung P., Prakash L., Prakash S. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr Biol. 1996 Sep 1;6(9):1185–1187. doi: 10.1016/s0960-9822(02)70686-6. [DOI] [PubMed] [Google Scholar]
- Iaccarino I., Palombo F., Drummond J., Totty N. F., Hsuan J. J., Modrich P., Jiricny J. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr Biol. 1996 Apr 1;6(4):484–486. doi: 10.1016/s0960-9822(02)00516-x. [DOI] [PubMed] [Google Scholar]
- Inokuchi K., Ikejima M., Watanabe A., Nakajima E., Orimo H., Nomura T., Shimada T. Loss of expression of the human MSH3 gene in hematological malignancies. Biochem Biophys Res Commun. 1995 Sep 5;214(1):171–179. doi: 10.1006/bbrc.1995.2271. [DOI] [PubMed] [Google Scholar]
- Jiricny J. Replication errors: cha(lle)nging the genome. EMBO J. 1998 Nov 16;17(22):6427–6436. doi: 10.1093/emboj/17.22.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. E., Kovvali G. K., Prakash L., Prakash S. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem. 1996 Mar 29;271(13):7285–7288. doi: 10.1074/jbc.271.13.7285. [DOI] [PubMed] [Google Scholar]
- Kolodner R. D., Marsischky G. T. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 1999 Feb;9(1):89–96. doi: 10.1016/s0959-437x(99)80013-6. [DOI] [PubMed] [Google Scholar]
- Lipkin S. M., Wang V., Jacoby R., Banerjee-Basu S., Baxevanis A. D., Lynch H. T., Elliott R. M., Collins F. S. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet. 2000 Jan;24(1):27–35. doi: 10.1038/71643. [DOI] [PubMed] [Google Scholar]
- Marra G., Iaccarino I., Lettieri T., Roscilli G., Delmastro P., Jiricny J. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8568–8573. doi: 10.1073/pnas.95.15.8568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marra G., Schär P. Recognition of DNA alterations by the mismatch repair system. Biochem J. 1999 Feb 15;338(Pt 1):1–13. [PMC free article] [PubMed] [Google Scholar]
- Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. doi: 10.1101/gad.10.4.407. [DOI] [PubMed] [Google Scholar]
- McMurray C. T. Mechanisms of DNA expansion. Chromosoma. 1995 Oct;104(1):2–13. doi: 10.1007/BF00352220. [DOI] [PubMed] [Google Scholar]
- Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. doi: 10.1146/annurev.ge.25.120191.001305. [DOI] [PubMed] [Google Scholar]
- Nakagawa T., Datta A., Kolodner R. D. Multiple functions of MutS- and MutL-related heterocomplexes. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14186–14188. doi: 10.1073/pnas.96.25.14186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papadopoulos N., Nicolaides N. C., Liu B., Parsons R., Lengauer C., Palombo F., D'Arrigo A., Markowitz S., Willson J. K., Kinzler K. W. Mutations of GTBP in genetically unstable cells. Science. 1995 Jun 30;268(5219):1915–1917. doi: 10.1126/science.7604266. [DOI] [PubMed] [Google Scholar]
- Rudolph C., Kunz C., Parisi S., Lehmann E., Hartsuiker E., Fartmann B., Kramer W., Kohli J., Fleck O. The msh2 gene of Schizosaccharomyces pombe is involved in mismatch repair, mating-type switching, and meiotic chromosome organization. Mol Cell Biol. 1999 Jan;19(1):241–250. doi: 10.1128/mcb.19.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmutte C., Marinescu R. C., Sadoff M. M., Guerrette S., Overhauser J., Fishel R. Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res. 1998 Oct 15;58(20):4537–4542. [PubMed] [Google Scholar]
- Schär P., Baur M., Schneider C., Kohli J. Mismatch repair in Schizosaccharomyces pombe requires the mutL homologous gene pms1: molecular cloning and functional analysis. Genetics. 1997 Aug;146(4):1275–1286. doi: 10.1093/genetics/146.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sia E. A., Kokoska R. J., Dominska M., Greenwell P., Petes T. D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol. 1997 May;17(5):2851–2858. doi: 10.1128/mcb.17.5.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strand M., Prolla T. A., Liskay R. M., Petes T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274–276. doi: 10.1038/365274a0. [DOI] [PubMed] [Google Scholar]
- Szankasi P., Heyer W. D., Schuchert P., Kohli J. DNA sequence analysis of the ade6 gene of Schizosaccharomyces pombe. Wild-type and mutant alleles including the recombination host spot allele ade6-M26. J Mol Biol. 1988 Dec 20;204(4):917–925. doi: 10.1016/0022-2836(88)90051-4. [DOI] [PubMed] [Google Scholar]
- Szankasi P., Smith G. R. A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science. 1995 Feb 24;267(5201):1166–1169. doi: 10.1126/science.7855597. [DOI] [PubMed] [Google Scholar]
- Tishkoff D. X., Amin N. S., Viars C. S., Arden K. C., Kolodner R. D. Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res. 1998 Nov 15;58(22):5027–5031. [PubMed] [Google Scholar]
- Tishkoff D. X., Boerger A. L., Bertrand P., Filosi N., Gaida G. M., Kane M. F., Kolodner R. D. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7487–7492. doi: 10.1073/pnas.94.14.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tornier C., Bessone S., Varlet I., Rudolph C., Darmon M., Fleck O. Requirement for Msh6, but not for Swi4 (Msh3), in Msh2-dependent repair of base-base mismatches and mononucleotide loops in Schizosaccharomyces pombe. Genetics. 2001 May;158(1):65–75. doi: 10.1093/genetics/158.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umar A., Kunkel T. A. DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur J Biochem. 1996 Jun 1;238(2):297–307. doi: 10.1111/j.1432-1033.1996.0297z.x. [DOI] [PubMed] [Google Scholar]
- Wang T. F., Kleckner N., Hunter N. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13914–13919. doi: 10.1073/pnas.96.24.13914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wierdl M., Dominska M., Petes T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. doi: 10.1093/genetics/146.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson D. M., 3rd, Carney J. P., Coleman M. A., Adamson A. W., Christensen M., Lamerdin J. E. Hex1: a new human Rad2 nuclease family member with homology to yeast exonuclease 1. Nucleic Acids Res. 1998 Aug 15;26(16):3762–3768. doi: 10.1093/nar/26.16.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]